Gọi d → = x ; y .
Từ giả thiết, ta có hệ − 2 x + 3 y = 4 4 x + y = − 2 ⇔ x = − 5 7 y = 6 7 .
Chọn B.
Gọi d → = x ; y .
Từ giả thiết, ta có hệ − 2 x + 3 y = 4 4 x + y = − 2 ⇔ x = − 5 7 y = 6 7 .
Chọn B.
Trong mặt phẳng tọa độ Oxy, cho hai vectơ a → = − 3 ; 2 và b → = − 1 ; − 7 . Tìm tọa độ vectơ c → biết c → . a → = 9 và c → . b → = − 20.
A. c → = − 1 ; − 3 .
B. c → = − 1 ; 3 .
C. c → = 1 ; − 3 .
D. c → = 1 ; 3 .
Trong mặt phẳng tọa độ Oxy, cho hai vectơ a → = − 3 ; 2 và b → = − 1 ; − 7 . Tìm tọa độ vectơ c → biết c → . a → = 9 và c → . b → = − 20.
A. c → = − 1 ; − 3 .
B. c → = − 1 ; 3 .
C. c → = 1 ; − 3 .
D. c → = 1 ; 3 .
Trong mặt phẳng tọa độ Oxy, cho bốn điểm A( 7; -3); B( 8; 4); C ( 1; 5) và D(0; -2). Khẳng định nào sau đây đúng?
A. A C → ⊥ C B → .
B. Tam giác ABC đều.
C. Tứ giác ABCD là hình vuông.
D. Tứ giác ABCD không nội tiếp đường tròn.
1.Trong mặt phẳng tọa độ Oxy cho hình bình hành ABCD với A (- 6;1); B (2;2) C (1;5) tọa độ đỉnh D là:
A. (5;2)
B. (-7;4)
C. (5;4)
D. (7;-4)
2.Trong mặt phẳng tọa độ Oxy cho tam giác ABC với A (- 1;3); B (2;1) C (5;5) tọa độ đỉnh D là của hình bình hành ABCD:
A. (0;4)
B. (8;1)
C. (8;3)
D. (-8;3)
Hướng dẫn em cách làm với ạ. Em cảm ơn nhiều.
cíu mình với :(
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ các đỉnh A B C (1; 2) (3; -1) ; (4; 5 ). a. Tìm tọa độ các vectơ AB AC ; b. Tìm tọa độ trung điểm I của đoạn BC
Trong mặt phẳng tọa độ Oxy , Cho hai điểm A(3;5), B(1;-7) và đường thẳng d:4x+3y-5=0. 1) viết phương trình đường tròn(c) có tâm thuộc trục Oy và đi qua hai điểm A,B 2) viết phương trình tiếp tuyến của (C) biết tiếp tuyến song song với đường thẳng d 3) tìm tọa độ điểm M thuộc đường thẳng d Sao cho |3MA+2MB+MC| Đạt giá trị nhỏ nhất
Bài 7. Trong mặt phẳng Oxy, cho A(1;-2), B(2;3), C(-2;1) và D(2;-3m).
Tìm tọa độ giao điểm của AB với đường thẳng d: y = 3x-9.
Trong mặt phẳng tọa độ Oxy, cho hai vectơ a → = 4 ; 3 và b → = 1 ; 7 . Tính góc giữa hai vectơ a → và b →
A.900
B. 600
C. 450
D. 300
Trên mặt phẳng tọa độ Oxy cho bốn điểm: A(7; -3), B(8; 4), C(1; 5), D(0; –2). Chứng minh rằng tứ giác ABCD là hình vuông.