Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : { x = 1 - t y = 2 + 2 t z = 3 + t và mặt phẳng P : x - y + 3 = 0 . Tính số đo góc giữa đường thẳng d và mặt phẳng (P).
A. 60 °
B. 30 °
C. 120 °
D. 45 °
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng P : x + y + z - 3 = 0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
A. M(5;9;-11)
B. M(-3;-7;13)
C. M(5;9;11)
D. M(3;-7;13)
Trong mặt phẳng tọa độ Oxy, cho đường tròn C 1 : x 2 + y 2 = 4 , C 2 : x 2 + y 2 - 12 x + 18 = 0 và đường thẳng d : x - y + 4 = 0 . Phương trình đường tròn có tâm thuộc C 2 , tiếp xúc với d và cắt C 1 tại hai điểm phân biệt A và B sao cho AB vuông góc với d là:
A. x - 3 2 + y - 3 2 = 4
B. x - 3 2 + y - 3 2 = 8
C. x + 3 2 + y + 3 2 = 8
D. x + 3 2 + y + 3 2 = 4
Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình x+y-2=0. Viết phương trình đường thẳng d' là ảnh của d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm I(-1;1) tỉ số k=1/2 và phép quay tâm O góc 45 °
A. y=0
B. x=0
C. y=x
D. y=-x
Trong không gian Oxyz, cho điểm A 1 ; 2 ; - 1 , đường thẳng d: x - 1 2 = y + 1 1 = z - 2 - 1 và mặt phẳng (P): x + y + 2 z + 1 = 0 . Điểm B thuộc mặt phẳng (P) thỏa mãn đường thẳng AB vuông góc và cắt đường thẳng d. Tọa độ điểm B là
A. 3 ; - 2 ; - 1
B. - 3 ; 8 ; - 3
C. 0 ; 3 ; - 2
D. 6 ; - 7 ; 0
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2
Trong mặt phẳng tọa độ Oxy, cho đường tròn ( C ) : x - 4 2 + y - 3 2 = 5 và đường thẳng d: x+2y-5=0. Tọa độ tiếp điểm M của đường thẳng d và đường tròn (C) là
A. M(3;1)
B. M(6;4)
C. M(5;0)
D. M(1;2)
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x-y-3=0 và điểm A(2;6). Trên đường thẳng d lấy hai điểm B và C sao cho tam giác ABC vuông tại A và có diện tích bằng 35 2 2 . Phương trình đường tròn ngoại tiếp tam giác ABC là:
A. hoặc x + 6 2 + y + 3 2 = 25
B. x - 5 2 + y - 2 2 = 25 hoặc x - 6 2 + y - 3 2 = 25
C. x - 5 2 + y - 2 2 = 100 hoặc x - 6 2 + y - 3 2 = 100
D. x + 5 2 + y + 2 2 = 100 hoặc x + 6 2 + y + 3 2 = 100