\(M\in Oy\Rightarrow M\left(0;t\right)\)
\(\Rightarrow\left|\overrightarrow{AM}\right|=\sqrt{1+\left(t-2\right)^2}\)
\(\left|\overrightarrow{BM}\right|=\sqrt{1+\left(t-1\right)}^2\)
Do tam giác MAB cân tại M \(\Rightarrow AM=BM\Leftrightarrow AM^2=BM^2\)
\(\Leftrightarrow1+\left(t-2\right)^2=1+\left(t-1\right)^2\)
\(\Leftrightarrow t=\dfrac{3}{2}\) \(\Rightarrow M\left(0;\dfrac{3}{2}\right)\)\(\Rightarrow OM=\dfrac{3}{2}\)