Trong mặt phẳng tọa độ Oxy, biết điểm M’(-3;0) là ảnh của điểm M(1;-2) qua phép tịnh tiến theo vectơ u → và M”(2;3) là ảnh của điểm M’ qua phép tịnh tiến theo vectơ v → . Tìm tọa độ vectơ u → + v → .
A. (1;5)
B. (-4;2)
C. (5;3)
D. (0;1)
Trong mặt phẳng với hệ tọa độ O x y cho điểm A ( 0 ; 1 ) và đường thẳng d có phương trình x = 2 + 2 t y = 3 + t .Tìm điểm M thuộc d biết M có hoành độ âm và cách điểm A một khoảng bằng 5.
A. M ( 4 ; 4 )
B. M ( - 24 5 ; - 2 5 )
C.
D. M ( - 4 ; 4 )
Trong khôn gian với hệ trục tọa độ Oxyz, cho mặt cầu S : x 2 + y − 4 2 + z 2 = 5 . Tìm tọa độ điểm A thuộc trục Oy, biết rằng ba mặt phẳng phân biệt qua A có các vec-tơ pháp tuyến lần lượt là các vec-tơ đơn vị của các trục tọa độ cắt mặt cầu theo thiết diện là ba hình tròn có tổng diện tích là 11 π
A. A 0 ; 2 ; 0 A 0 ; 6 ; 0
B. A 0 ; 0 ; 0 A 0 ; 8 ; 0
C. A 0 ; 0 ; 0 A 0 ; 6 ; 0
D. A 0 ; 2 ; 0 A 0 ; 8 ; 0
Trong không gian với hệ tọa độ Oxyz, cho (α) là mặt phẳng đi qua điểm M(1; - 2; 4) và có véc-tơ pháp tuyến =(2; 3; 5). Phương trình mặt phẳng (α) là:
A. 2x + 3y + 5z - 16=0
B. x - 2y + 4z - 16=0
C. 2x + 3y + 5z + 16=0
D. x - 2y + 4z=0.
Cho điểm M (1; 2; 5), mặt phẳng (P) đi qua điểm M cắt trục tọa độ Ox; Oy; Oz tại A, B, C sao cho M là trực tâm của tam giác ABC. Phương trình mặt phẳng (P) là
Trong không gian với hệ tọa độ Oxyz cho điểm M (-1;2;3).
Khi đó điểm M ' đối xứng với M qua mặt phẳng (Oxy) có tọa độ là
A. M ' (1;2;3)
B. M ' (-1;-2;3)
C. M ' (-1;2;-3)
D. M ' (1;-2;3)
Cho M(2;-5;7) Tìm tọa độ điểm đối xứng của M qua mặt phẳng Oxy
A. M'(2;5;7)
B. M'(-2;5;7)
C. M'(-2;5;-7)
D. M'(2;-5;-7)
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(1;2; –3), B(–1;1;2), C(0;–3;–5). Xác định điểm M trên mặt phẳng Oxy sao cho: M A → + M B → + M C → đạt giá trị nhỏ nhất. Giá trị nhỏ nhất đó là
A. 0
B. 5
C. 5
D. 6
Trong không gian với hệ tọa độ Oxyz, cho điểm M(-1;2;-5). Tính khoảng cách từ điểm M đến mặt phẳng (Oxy).
A. √30
B. √5
C. 25
D. 5