Đáp án A
Phương trình mặt phẳng (α): 2(x - 1) + 3(y + 2) + 5(z - 4)=0<=> 2x + 3y + 5z - 16=0.
Đáp án A
Phương trình mặt phẳng (α): 2(x - 1) + 3(y + 2) + 5(z - 4)=0<=> 2x + 3y + 5z - 16=0.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( α ): 2x+3y-4z+5=0. Vecto nào sau đây là một vec tơ pháp tuyến của mặt phẳng
A. (2;3;-4)
B. (2;3;5)
C. (2;3;4)
D. (-4;3;2)
Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng α : 2 x + 4 y − 5 z + 2 = 0 , β : x + 2 y − 2 z + 1 = 0 và γ : 4 x − m y + z + n = 0 . Để ba mặt phẳng đó có chung giao tuyến thì tổng m+n bằng
A. -4
B. 8
C.-8
D. 4
Trong không gian tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 - 2x + 4y - 4z -16 = 0 và mặt phẳng (P): x + 2y - 2z - 2 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính là:
A. r = 6
B. r = 2 2
C. r = 4
D. r = 2 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 2x + 3y - 4z + 7= 0. Tìm tọa độ véctơ pháp tuyến của (P).
A. (-2;3;-4)
B. (-2;-3;-4)
C. (2;3;-4)
D. (2;-3;-4)
Cho mặt phẳng ( α ) : 2 x - 3 y - 4 z + 1 = 0 . Khi đó, một véc- tơ pháp tuyến của ( α )
A. n → = ( - 2 ; 3 ; 1 )
B. n → = ( 2 ; 3 ; - 4 )
C. n → = ( 2 ; - 3 ; 4 )
D. n → = ( - 2 ; 3 ; 4 )
Trong không gian với hệ tọa độ Oxyz, mặt phẳng(α) đi qua điểm M(1;2;-3) và nhận =(1;-2;3) làm véc-tơ pháp tuyến có phương trình là:
A. x-2y-3z+6=0
B. x-2y-3z-6=0
C. x-2y+3z-12=0
D. x-2y+3z+12=0.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;1), B(2;1;2) và mặt phẳng (P):x+2y+3z+3=0. Phương trình mặt phẳng ( α ) đi qua hai điểm A, B và vuông góc với mặt phẳng là:
A. x + 2y -z +6 =0
B.x + 2y -3z +6 =0
C. x -2y + z-2 =0
D. x + 2y -3z +6 =0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x+3y-4z+5=0. Vecto nào sau đây là 1 vecto pháp tuyến của mặt phẳng (P)?
A. (-4;3;2)
B. (2;3;-4)
C. (2;3;4)
D. (2;3;5)
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng α : 2 x - y - 3 z + 10 = 0 và điểm M(2;-2;3). Mặt phẳng (P) đi qua M và song song với mặt phẳng α có phương trình là: