Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).


![]()
![]()
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
![]()
![]()

![]()
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + t y = 2 t z = - 1 và mặt phẳng (P): 2x+y-2z-1=0. Phương trình đường thẳng đi qua M(1;2;1), song song với mặt phẳng (P) và vuông góc với đường thẳng d là:




Trong không gian với hệ tọa độ Oxyz cho điểm M (3;-1;-2) và mặt phẳng ( α ): 3x-y+2z+4=0. Phương trình nào dưới đây là phương trình mặt phẳng đi qua M và song song với ( α )?
A. 3x+y-2z-14=0
B. 3x-y+2z+6=0
C. 3x-y+2z-6=0
D. 3x-y-2z+6=0
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 2 1 = y - 1 - 2 = z + 1 3 và mặt phẳng ( α ) : - x + 2 y - 3 z = 0 . Gọi ρ là góc giữa đường thẳng d và mặt phẳng ( α ) . Khi đó, góc ρ bằng
A. 0 °
B. 45 °
C. 90 °
D. 60 °
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;-1;-2) và đường thẳng d có phương trình x - 1 1 = y - 1 - 1 = z - 1 1 . Gọi (P) là mặt phẳng đi qua điểm A, song song với đường thẳng d và khoảng cách từ đường thẳng d tới mặt phẳng (P) là lớn nhất. Khi đó, mặt phẳng (P) vuông góc với mặt phẳng nào sau đây?
![]()
![]()
![]()
![]()
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng ( P ) : x + 2 y + 2 z - 4 = 0 . Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là




Trong không gian với hệ tọa đọ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng ∆ có phương trình x - 2 1 = y - 1 1 = z 2 và vuông góc với mặt phẳng β : x + y - 2 z + 1 = 0 . Giao tuyến của (α) và (β) đi qua điểm nào trong các điểm sau:
A. A (2;1;1)
B. C (1;2;1)
C. D (2;1;0)
D. B(0;1;0)
Trong không gian Oxyz, cho mặt phẳng α : 2 x + 3 y - 2 z + 12 = 0 . Gọi A, B, C lần lượt là giao điểm của α với 3 trục tọa độ, đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC và vuông góc với α có phương trình là
![]()

![]()
