Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Trong không gian Oxyz cho các điểm M(2,1,4); N(5,0,0); P 1 , - 3 , 1 . Gọi I(a,b,c) là tâm của mặt cầu tiếp xúc với mặt phẳng (Oyz) đồng thời đi qua các điểm M ,N , P. Tìm c biết rằng a + b + c < 5
A. 3
B. 2
C. 4
D. 1
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A 1 ; 2 ; 1 , B 3 ; − 1 ; 1 , C − 1 ; − 1 ; 1 . Gọi S 1 là mặt cầu tâm A, bán kính bằng 2; S 2 và S 3 là hai mặt cầu có tâm lần lượt là B, C và bán kính đều bằng 1. Trong các mặt phẳng tiếp xúc với cả 3 mặt cầu S 1 , S 2 , S 3 có bao nhiêu mặt phẳng vuông góc với mặt phẳng (Oyz)?
A. 3
B. 1
C. 4
D. 2
Trong không gian với hệ tọa độ Oxyz, cho điểm A 1 ; 2 ; - 3 , B 3 2 ; 3 2 ; - 1 2 , C 1 ; 1 ; 4 , D 5 ; 3 ; 0 . Gọi S 1 là mặt cầu tâm A bán kính bằng 3, S 2 là mặt cầu tâm B bán kính bằng 3 2 Có bao nhiêu mặt phẳng tiếp xúc với 2 mặt cầu S 1 , S 2 đồng thời song song với đường thẳng đi qua 2 điểm C, D.
A. 1
B. 2
C. 3
D. Vô số
Trong không gian với hệ tọa độ Oxyz, cho A 1 ; 2 ; - 3 , B 3 2 ; 3 2 ; - 1 2 , C 1 ; 1 ; 4 , D 5 ; 3 ; 0 , Gọi S 1 là mặt cầu tâm A bán kính bằng 3, S 2 là mặt cầu tâm B bán kính bằng 3 2 . Có bao nhiêu mặt phẳng tiếp xúc với 2 mặt cầu S 1 , S 2 đồng thời song song với đường thẳng đi qua 2 điểm C D, .
A. 1
B. 2
C. 4
D. Vô số
Trong không gian với hệ tọa độ Oxyz, xét tứ diện ABCD có các cặp cạnh đối diện bằng nhau và điểm D khác phía với O so với mặt phẳng (ABC); đồng thời A, B, C lần lượt là giao điểm của các trục Ox, Oy, Oz và mặt phẳng α : x m + y m + 2 + z m - 5 = 1 (với m ≠ - 2 , m ≠ 0 , m ≠ 5 ). Tìm khoảng cách ngắn nhất từ tâm mặt cầu ngoại tiếp I của tứ diện ABCD đến O.
A. 20
B. 1 4
C. 36
D. 26 2
Trong không gian Oxyz, cho ba điểm A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c#0. Biết rằng mặt phẳng (ABC) đi qua điểm M 2 3 ; 4 3 4 3 và tiếp xúc với mặt cầu S : x - 1 2 + y - 2 2 + z - 2 2 = 1 . Thể tích khối tứ diện OABC bằng
A. 4
B. 6
C. 9
D. 12
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 + a x + b y + c z + d = 0 có bán kính R = 19 , đường thẳng d : x = 5 + t y = - 2 - 4 t z = - 1 - 4 t và mặt phẳng ( P ) : 3 x - y - 3 z - 1 = 0 . Trong các số {a,b,c,d} theo thứ tự dưới đây, số nào thỏa mãn a + b + c + d = 43, đồng thời tâm I của (S) thuộc đường thẳng d và (S) tiếp xúc với (P)?
A. {-6;-12;-14;75}
B. {6;10;20;7}
C. {-10;4;2;47}
D. {3;5;6;29}
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-1;-1),B(4;-5;-5) và mặt phẳng (P):x+y+z-3=0. Mặt cầu (S) thay đổi qua hai điểm A,B và cắt mặt phẳng (P) theo giao tuyến là đường tròn (C) có tâm H và bán kính bằng 3. Biết rằng H luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó.
A. 21 .
B. 2 6 .
C. 6.
D. 3 3 .