Gọi d là đường thẳng đi qua O vuông góc với (P)
Gọi d là đường thẳng đi qua O vuông góc với (P)
Trong không gian với hệ trục tọa độ Oxyz, gọi H là hình chiếu vuông góc của điểm A(-3;-1;-1) lên mặt phẳng (P): 2x + y + z - 4 = 0. Tìm tọa độ điểm H
A. H(2;0;0)
B. H(1;2;0)
C. H(1;1;1)
D. H ( 1 2 ; 1 ; 2 )
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y - 2 1 = z + 1 3 và mặt phẳng P : x + y + z - 3 = 0 . Đường thẳng d ' là hình chiếu của d theo phương Ox lên (P), d ' nhận u → a ; b ; 2019 làm một véc tơ chỉ phương. Xác định tổng a + b
A. 2019
B. - 2019
C. 2018
D. - 2020
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d tương ứng có phương trình là 2 x - y + 3 z - 3 = 0 và x + 1 - 2 = y - 2 1 = z + 2 - 1 . Biết đường thẳng d cắt mặt phẳng (P) tại điểm M. Gọi N là điểm thuộc d sao cho M N = 3 , gọi K là hình chiếu vuông góc của điểm N trên mặt phẳng (P). Tính độ dài đoạn MK.
A. M K = 7 105
B. M K = 7 4 21
C. M K = 4 21 7
D. M K = 105 7
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 3 2 = y + 2 1 = z + 1 - 1 và mặt phẳng (P): x + y + z + 2 = 0. Đường thẳng ∆ nằm trong mặt phẳng (P), vuông góc với đường thẳng d đồng thời khoảng cách từ giao điểm I của d với (P) đến ∆ bằng 42 . Gọi M(5;b;c) là hình chiếu vuông góc của I trên ∆. Giá trị của bc bằng
A. - 10
B. 10
C. 12
D. - 20
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ tọa độ oxyz, cho mặt phẳng P : x + y + z - 3 = 0 và đường thẳng d : x - 2 1 = y + 1 - 2 = z - 1 . Gọi I là giao điểm của mặt phẳng (P) với đường thẳng d. Điểm M thuộc mặt phẳng (P) có hoành độ dương sao cho IM vuông góc với d và I M = 4 14 có tọa độ là:
A. M(5;9;-11)
B. M(-3;-7;13)
C. M(5;9;11)
D. M(3;-7;13)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x − 1 1 = y − 1 2 = z − 2 − 1 và mặt phẳng ( P ) : 2 x + y + 2 z − 1 = 0. Gọi d’ là hình chiếu của đường thẳng d lên mặt phẳng (P), vectơ chỉ phương của đường thẳng d’ là
A. u 3 → ( 5 ; − 16 ; − 13 ) .
B. u 2 → ( 5 ; − 4 ; − 3 ) .
C. u 4 → ( 5 ; 16 ; 13 ) .
D. u 1 → ( 5 ; 16 ; − 13 ) .
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3), B(3;-2;1) và mặt phẳng (P): x+ y-z-3=0. Gọi M,N lần lượt là hình chiếu của A và B lên mặt phẳng (P). Tính độ dài đoạn thẳng MN
A. 2 6
B. 4 3
C. 24
D. 3 2