Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình là x²+y²+z²-2x-4y-6z+5=0. Tính diện tích mặt cầu (S).
A. 42π
B. 36π
C. 9π
D. 12π.
Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu (S): (x-1)²+ (y-2)²+ (z-3)²=9, điểm A (0; 0; 2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là:
A. (P):x+2y+3z+6=0.
B. (P):x+2y+z-2=0.
C. (P):x-2y+z-6=0.
D. (P):3x+2y+2z-4=0.
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt cầu (S) có tâm nằm trên đường thẳng d : x 1 = y - 1 1 = z - 2 1 và tiếp xúc với hai mặt phẳng (P): 2x - z - 4 = 0, (Q): x – 2y – 2 = 0
A . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
B . S : x - 1 2 + y - 2 2 + z - 3 2 = 5
C . S : x + 1 2 + y + 2 2 + z + 3 2 = 5
D . S : x - 1 2 + y - 2 2 + z - 3 2 = 3
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình x²+y²+z²+2x-4y+6z-2=0. Tìm tọa độ tâm I và tính bán kính R của (S).
A. Tâm I(-1;2;-3) và bán kính R=4
B. Tâm I(1;-2;3) và bán kính R=4
C. Tâm I(-1;2;3) và bán kính R=4
D. Tâm I(1;-2;3) và bán kính R=16.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình x - 1 2 + y - 2 2 + z + 1 2 = 1 , phương trình mặt phẳng (Q) chứa trục hoành và tiếp xúc với mặt cầu (S) là
A. (Q): 4y +3z = 0
B. (Q): 4y +3z +1= 0
C. (Q): 4y -3z +1= 0
D. (Q): 4y -3z = 0
Trong không gian với hệ tọa độ Oxyz cho mặt cầu (S) có phương trình x - 1 2 + y - 2 2 + z + 1 2 = 1 . Một phương trình mặt phẳng (Q) chứa trục hoành và tiếp xúc với mặt cầu (S) là:
A. 4y + 3z = 0
B. 4y + 3z + 1 = 0
C. 4y - 3z + 1 = 0
D. 4y - 3z = 0
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình ( S ) : x 2 + y 2 + z 2 - 2 x - 4 y - 6 z + 5 = 0 . Tính diện tích mặt cầu (S)
A. 42 π
B. 36 π
C. 9 π
D. 12 π
#2H3Y1-3~Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): (x+1)²+(y-2)²+(z-1)²=9. Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S).
A. I(-1;2;1) và R=3
B. I(-1;2;1) và R=9
C. I(1;-2;-1) và R=3
D. I(1;-2;-1) và R=9.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình x 2 + y 2 + z 2 - 2 x - 4 y - 6 z + 5 = 0 . Tính diện tích mặt cầu (S).
A. 36 π
B. 42 π
C. 9 π
D. 12 π