Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 9 điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là
A. ( P ) : x + 2 y + 3 z + 6 = 0
B. ( P ) : x + 2 y + z - 2 = 0
C. ( P ) : x - 2 y + z - 6 = 0
D. ( P ) : 3 x + 2 y + 2 z - 4 = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 - 1 = y - 2 1 = z + 1 2 điểm A(2;-1;1). Gọi I là hình chiếu vuông góc của A lên d. Viết phương trình mặt cầu (C) có tâm I và đi qua A
A. x 2 + ( y - 3 ) 2 + ( z - 1 ) 2 = 20
B. x 2 + ( y + 1 ) 2 + ( z + 2 ) 2 = 5
C. ( x - 2 ) 2 + ( y - 1 ) 2 + ( z + 3 ) 2 = 20
D. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 14
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 1 = y - 1 2 = z + 1 - 1 và điểm A(5;4;-2). Phương trình mặt cầu đi qua điểm A và có tâm là giao điểm của d với mặt phẳng (Oxy) là
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;0;-1) và mặt phẳng P : x + y - z - 3 = 0 . Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S)
A. R = 3
B. R = 9
C. R = 1
D. R = 5
Trong không gian với hệ tọa độ Oxyz cho điểm A(2;-1;0) và mặt phẳng ( P ) : x - 2 y + z + 2 = 0 . Gọi I là hình chiếu vuông góc của A trên mặt phẳng (P). Phương trình mặt cầu đi qua A và có tâm I là
A. x + 1 2 + y + 1 2 + z + 1 2 = 6
B. x + 1 2 + y - 1 2 + z + 1 2 = 6
C. x - 1 2 + y - 1 2 + z + 1 2 = 6
D. x + 1 2 + y + 1 2 + z - 1 2 = 6
Trong không gian Oxyz, cho mặt cầu (S)có phương trình ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 25 . Tọa độ tâm I và bán kính R của (S) là
A. I(1;2;3) và R=5.
B. I(-1;-2;-3) và R=5.
C. I(1;2;3) và R=25.
D. I(-1;-2;-3) và R=25
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y 1 = z - 2 và hai điểm A(2;1;0), B(-2;3;2). Viết phương trình mặt cầu đi qua A,B và có tâm I thuộc đường thẳng d.
A. x - 3 2 + y - 1 2 + z + 2 2 = 5
B. x - 1 2 + y - 1 2 + z + 2 2 = 17
C. x + 1 2 + y + 1 2 + z - 2 2 = 17
D. x + 3 2 + y + 1 2 + z - 2 2 = 5
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).
Trong không gian Oxyz với hệ tọa độ Oxyz, cho điểm I(0; -2; 1) và hai đường thẳng d 1 : x 4 = y + 2 2 = z - 1 - 1 , d 2 : x + 1 1 = y - 2 - 1 = z 2 . Viết phương trình đường thẳng đi qua I cắt d 1 và vuông góc với d 2 .
A. x 4 = y + 2 2 = z - 1 - 1
B. x 5 = y + 2 1 = z - 1 - 2
C. x 5 = y - 2 1 = z + 1 - 2
D. x 4 = y + 2 2 = z + 1 - 1