Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d: x + 1 1 = y - 3 = z - 5 - 1 và mặt phẳng (P): 3x-2y+2z+6=0. Mệnh đề nào sau đây đúng?
A. d vuông góc với (P)
B. d nằm trong (P)
C. d nằm trong và không vuông góc với (P)
D. d song song với (P)
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: △ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng (P): x+2y+2z-4=0. Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là
A. d : x = - 3 + t y = 1 - 2 t z = 1 - t
B. d : x = 3 t y = 2 + t z = 2 + 2 t
C. d : x = - 2 - 4 t y = - 1 + t z = 4 - t
D. d : x = - 1 - t y = 3 - 3 t z = 3 - 2 t
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x 1 = y - 1 2 = z + 2 2 mặt phẳng (P): 2x+y+2z-5=0 và điểm A(1; 1; -2) Phương trình chính tắc của đường thẳng ∆ đi qua A song song với mặt phẳng (P) và vuông góc với d là
A. ∆ : x - 1 1 = y - 1 2 = z + 2 - 2
B. ∆ : x - 1 2 = y - 1 1 = z + 2 - 2
C. ∆ : x - 1 2 = y - 1 2 = z + 2 - 3
D. ∆ : x - 1 1 = y - 2 2 = z + 2 2
Trong không gian với hệ tọa độ Oxyz cho đường thẳng Δ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng P : x + 2 y + 2 z - 4 = 0 . Phương trình đường thăng d nằm trong (P) sao cho d cắt và vuông góc với đường thẳng ∆ là
A. d : x = - 3 + t y = 1 - 2 t t ∈ R z = 1 - t
B. d : x = 3 t y = 2 + t t ∈ R z = 2 + 2 t
C. d : x = - 2 - 4 t y = - 1 + 3 t t ∈ R z = 4 - t
D. d : x = - 1 - t y = 3 - 3 t t ∈ R z = 3 - 2 t
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : x + 2 y + z - 4 = 0 và đường thẳng d : x + 1 2 = y 1 = z + 2 3 . Viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d.
A. x - 1 5 = y - 1 - 1 = z - 1 - 3
B. x - 1 5 = y - 1 - 1 = z - 1 3
C. x - 1 5 = y - 1 1 = z - 1 - 3
D. x - 1 5 = y - 1 - 1 = z - 1 2
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ : x + 2 1 = y - 2 1 = z - 1 và mặt phẳng ( P ) : x + 2 y - 3 z + 4 = 0 . Đường thẳng d nằm trong (P) sao cho d cắt và vuông góc với ∆ có phương trình là:
A. x + 3 1 = y - 1 - 1 = z - 1 2
B. x + 1 - 1 = y - 3 2 = z + 1 1
C. x - 3 1 = y + 1 - 1 = z + 1 2
D. x + 3 - 1 = y - 1 2 = z - 1 1
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng ( P ) : x + y - z - 2 = 0 . Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng (P) đồng thời vuông góc và cắt đường thẳng d?
A. ∆ 1 : x - 2 1 = y - 4 - 2 = z - 4 3
B. ∆ 2 : x - 1 3 = y - 1 - 2 = z 1
C. ∆ 3 : x - 5 3 = y - 2 - 2 = z - 5 1
D. ∆ 4 : x + 2 - 3 = y + 4 2 = z + 4 1
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x = 1 + t y = 2 t z = - 1 và mặt phẳng ( P ) : 2 x + y - 2 z - 1 = 0 . Phương trình đường thẳng đi qua M(1;2;1), song song với mặt phẳng (P) và vuông góc với đường thẳng d là:
A. x = 1 + 7 t y = 2 - 5 t z = 1 + 2 t
B. x = 1 + 2 t y = 2 - 4 t z = 1 + 2 t
C. x = 1 + 5 t y = 2 - 7 t z = 1 + 2 t
D. x = 1 + 4 t y = 2 - 2 t z = 1 + 3 t