Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S m ) : ( x - 1 ) 2 + ( y - 1 ) 2 + ( z - m ) 2 = m 2 4 và hai điểm A(2;3;5), B(1;2;4). Tìm giá trị nhỏ nhất của m để trên ( S m ) tồn tại điểm M sao cho M A 2 - M B 2 = 9 .
A. m=1
B. m= 3 - 3
C. m= 8 - 4 3
D. m= 4 - 3 2
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và mặt phẳng (P): 2x + y - 4z + 1 =0. Đường thẳng (d) đi qua điểm A, song song với mặt phẳng (P), đồng thời cắt trục Oz. Viết phương trình tham số của đường thẳng d.
A. x = 1 + 5 t y = 2 - 6 t z = 3 + t
B. x = t y = 2 t z = 2 + t
C. x = 1 + 3 t y = 2 + 2 t z = 3 + t
D. x = 1 - t y = 2 + 6 t z = 3 + t
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng đi
qua điểm A(1;2;-3) có vectơ pháp tuyến n → = ( 2 ; - 1 ; 3 ) là
A. 2x - y + 3z + 9 = 0
B. 2x -y + 3z - 4 = 0
C. x - 2y - 4 = 0
D. 2x - y + 3z + 4 = 0
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng đi qua điểm A(1;2;-3) có vectơ pháp tuyến n → = ( 2 ; - 1 ; 3 ) là
A. 2x - y + 3z + 9 = 0
B. 2x - y + 3z - 4 = 0
C. x - 2y - 4 = 0
D. 2x - y + 3z + 4
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình: 3x+4y+2z+4=0 và điểm A(1;-2;3). Tính khoảng cách d từ A đến (P)
A. d = 5 9
B. d = 5 29
C. d = 5 29
D. 5 3
Cho số phức \(z=1-2i\) . Điểm nào dưới đây là điểm biểu diễn số phức w = iz trên mặt phẳng tọa độ
A: Q(1;2)
B: N(2;1)
C: P(-2;1)
D: M(1;-2)
Tập hợp các điểm biểu diễn số phức z thỏa mãn 2 z - 1 = z + z + 2 trên mặt phẳng tọa độ là một
A. đường thẳng
B. parabol
C. đường tròn
D. hypebol
Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A ( 2 ; 3 ; 2 ) , B ( - 2 ; - 1 ; 4 ) . Tìm tọa độ điểm E thuộc trục Oz sao cho E cách đều hai điểm A, B
Trong không gian Oxyz cho hai mặt phẳng (P): x-y+2z-3=0, (Q): x-y+2z+3=0 có bao nhiêu điểm M có hoành độ nguyên thuộc Ox sao cho tổng khoảng cách từ M đến hai mặt phẳng (P), (Q) bằng khoảng cách giữa (P) và (Q).
A. 2
B. 4
C. 6
D. 7