Trong không gian với hệ trục tọa độ Oxyz cho điểm A(2;-2;2) và mật cầu (S): x 2 + y 2 + ( z - 1 ) 2 = 4 . Điểm M di chuyển trên mặt cầu (S) đồng thời thỏa mãn O M → . A M → = 6 . Điểm M luôn thuộc mặt phẳng nào dưới đây?
Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A ( 2 ; 3 ; 2 ) , B ( - 2 ; - 1 ; 4 ) . Tìm tọa độ điểm E thuộc trục Oz sao cho E cách đều hai điểm A, B
Tổng giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số f(x) = (x-6) x 2 + 4 trên đoạn [0;3] có dạng a - b c với a là số nguyên và b, c là các số nguyên dương. Tính S = a + b + c.
A. 4
B. -2
C. -22
D. 5
Cho z = x + y i với x, y ∈ R là số phức thỏa mãn điều kiện z ¯ + 2 - 3 i ≤ | z + i - 2 | ≤ 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 2 + y 2 + 8 x + 6 x . Tính M+m.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và mặt phẳng (P): 2x + y - 4z + 1 =0. Đường thẳng (d) đi qua điểm A, song song với mặt phẳng (P), đồng thời cắt trục Oz. Viết phương trình tham số của đường thẳng d.
A. x = 1 + 5 t y = 2 - 6 t z = 3 + t
B. x = t y = 2 t z = 2 + t
C. x = 1 + 3 t y = 2 + 2 t z = 3 + t
D. x = 1 - t y = 2 + 6 t z = 3 + t
Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng (ABC), đáy ABC là tam giác cân tại A và B A C ^ = 120 ∘ , B C = 2a. Gọi M, N lần lượt là hình chiếu của điểm A trên SB, SC. Tính bán kính mặt cầu đi qua bốn điểm A, N, M, B.
Trong không gian Oxyz, cho tam giác ABC với A(1;2;5), B(3;4;1), C(2;3;-3). Gọi G là trọng tâm tam giác ABC và M là điểm thay đổi trên (Oxz). Độ dài GM ngắn nhất bằng
A. 2
B. 3
C. 4
D. 1
Trong không gian Oxyz, cho tam giác ABC với A ( 1 ; 2 ; 5 ) , B ( 3 ; 4 ; 1 ) , C ( 2 ; 3 ; - 3 ) . Gọi G là trọng tâm tam giác ABC và M là điểm thay đổi trên mp(Oxz). Độ dài GM ngắn nhất bằng
A. 2
B. 3
C. 4
D. 1
Trong không gian Oxyz cho hai mặt phẳng (P): x-y+2z-3=0, (Q): x-y+2z+3=0 có bao nhiêu điểm M có hoành độ nguyên thuộc Ox sao cho tổng khoảng cách từ M đến hai mặt phẳng (P), (Q) bằng khoảng cách giữa (P) và (Q).
A. 2
B. 4
C. 6
D. 7