Trong không gian với hệ trục tọa độ Oxyz, cho điểm A( 1;0;6). Biết rằng có hai điểm M, N phân biệt thuộc trục Ox sao cho các đường thẳng AM, AN cùng tạo với đường thẳng chứa trục Ox một góc 45 ° . Tổng các hoành độ hai điểm M, N tìm được là
A. 4
B. 2
C. 1
D. 5
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và đường thẳng (d): x - 2 2 = y + 2 - 1 = z - 3 1 . Gọi điểm B thuộc trục Ox sao cho AB vuông góc với đường thẳng (d). Khoảng cách từ B đến mặt phẳng ( α ): 2x+2y-z-1=0 là:
A. 2
B. 2 3
C. 1 3
D. 1
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x − 1 2 = y − 3 − 3 = z 2 và điểm I(2;1;-1). Tọa độ điểm M(a;b;c) có hoành độ nguyên thuộc đường thẳng d sao cho I M = 6 . Tính tổng S = a − 3 b + 2017 c . Chọn đáp án đúng
A. 2009
B. –8
C. 4
D. 2015
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và cho đường thẳng d có phương trình x - 2 2 = y + 2 - 1 = z - 3 1 . Tìm tọa độ của điểm B thuộc trục hoành sao cho AB vuông góc với d
A. B ( - 3 2 ; 0 ; 0 )
B. B ( 1 ; 0 ; 0 )
C. B ( 3 2 ; 0 ; 0 )
D. B ( 1 ; 0 ; 0 )
Trong không gian Oxyz cho điểm A 1 ; - 1 ; 0 và đường
thẳng d: d : x + 1 2 = y - 1 1 = z - 3 . Mặt phẳng (P) chứa
A và vuông góc với đường thẳng (d). Tọa độ điểm B
có hoành độ dương thuộc trục Ox sao cho khoảng
cách từ B đến mặt phẳng (P) bằng 14 là:
A. B 15 2 ; 0 ; 0
B. B 13 2 ; 0 ; 0
C. B 19 2 ; 0 ; 0
D. B 17 2 ; 0 ; 0
Cho hàm số y = 2 x + 1 x − 1 có đồ thị là (H) và đường thẳng d có hệ số góc m và đi qua điểm A − 2 ; 2 . Giả sử d cắt (H) tại hai điểm phân biệt M, N. Qua M kẻ các đường thẳng lần lượt song song với các trục tọa độ, qua N kẻ các đường thẳng lần lượt song song với các trục tọa độ. Tìm số các giá trị thực của tham số m sao cho bốn đường thẳng đó tạo thành một hình vuông.
A. 0
B. 1
C. 2
D. 3
Trong không gian Oxyz, cho điểm A(1;2;3) và đường thẳng d : x - 2 1 = y + 2 - 1 = z - 3 1 Gọi B là điểm thuộc trục hoành sao cho AB vuông góc với d, khi đó B có tọa độ là
A. - 3 2 ; 0 ; 0
B. (1;0;0)
C. 3 2 ; 0 ; 0
D. (-1;0;0)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;1) và B(3;1;0). Mặt phẳng (P) song song với đường thẳng AB và trục Ox có một véc tơ pháp tuyến là
A. n → 1 ; 1 ; 0
B. n → 1 ; 0 ; 0
C. n → 2 ; - 1 ; - 1
D. n → 0 ; - 1 ; 1
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;2;1) và hai đường thẳng d 1 : x - 1 1 = y + 1 1 = z - 3 - 1 ; d 2 : x - 1 1 = y + 2 1 = z - 2 1 . Viết phương trình đường thẳng d song song với mặt phẳng P : 2 x + 3 y + 4 z - 6 = 0 , cắt đường thẳng d 1 , d 2 lần lượt tại M và N sao cho A M → A N → = 5 và điểm N có hoành độ nguyên.
A. d : x - 2 1 = y - 2 = z - 2 1
B. d : x - 3 1 = y - 1 2 = z - 1 - 2
C. d : x 3 = y + 2 2 = z - 4 - 3
D. d : x - 1 4 = y + 1 - 4 = z - 3 1