Đáp án C.
Vì OA = 1, OB = 2, OC = 3 và đôi một vuông góc
Đáp án C.
Vì OA = 1, OB = 2, OC = 3 và đôi một vuông góc
Trong không gian Oxyz cho A(-1;0;0), B(0;0;2), C(0;-3;0). Tính bán kính mặt cầu ngaoij tiếp tứ diện OABC
A. 14 3
B . 14 4
C. 14 2
D. 14
Trong không gian với hệ tọa độ Oxyz cho điểm A(2;0;0), B(0;2;0), C(0;0;2), D(2;2;2). Tính bán kính mặt cầu ngoại tiếp khối tứ diện ABCD.
A. 2 .
B. 2 2 .
C. 3 .
D. 2 3 .
Trong không gian Oxyz, cho 2 điểm A(0;3;0), B(0;0;-4) và (P): x+2z=0. Gọi C thuộc trục Ox sao cho mặt phẳng (ABC) vuông góc với mặt phẳng (P). Tọa độ tâm mặt cầu ngoại tiếp tứ diện OABC là
A. ( 1 ; 3 2 ; - 2 )
B. ( - 1 ; - 3 2 ; 2 )
C. ( 1 2 ; 3 2 ; - 1 )
D. ( 1 ; 0 ; - 2 )
Trong không gian với hệ tọa độ Oxyz, cho A(4;0;0), B(0;4;0), C(0;0;4) Bán kính mặt cầu nội tiếp tứ diện OABC bằng:
A. 4 6 + 2 3
B. 3 6 + 2 3
C. 4 3 + 3
D. 5 6 + 2 3
Trong Oxyz cho A(0;2;0), B(1;2;0), C(1;0;0), D(0;0;2). Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(-2;6;0), B(0;6;0), C(0;0;-2). Phương trình mặt cầu ngoại tiếp hình chóp OABC (O là gốc tọa độ) là:
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;0;0), B(0;2;0), C(0;0;3). Tập hợp các điểm M thỏa M A 2 = M B 2 + M C 2 là mặt cầu có bán kính
A. R = 2
B. R = 3
C. R = 3
D. R = 2
Trong không gian với hệ tọa độ Oxyz, cho A ( 1 ; 0 ; 2 ) , B ( 3 ; 1 ; 4 ) , C ( 3 ; - 2 ; 1 ) . Tìm tọa độ điểm S, biết SA vuông góc với (ABC), mặt cầu ngoại tiếp tứ diện S.ABC có bán kính bằng 3 11 2 và S có cao độ âm
Trong không gian với hệ tọa độ Oxyz, cho A(1;0;2), B(3;1;4), C(3;-2;1). Tìm tọa độ điểm S, biết SA vuông góc với (ABC), mặt cầu ngoại tiếp tứ diện S.ABC có bán kính bằng 3 11 2 và S có cao độ âm.
A. S(4;6;-4)
B.S(4;-6;-4)
C. S(-4;6;-4)
D. S(-4;-6;-4)