Trong không gian với hệ trục tọa độ Oxyz cho A(-1;0;0), B(0;0;2), C(0;-3;0). Bán kính mặt cầu ngoại tiếp tứ diện OABC là
A. 14 3
B. 14 4
C. 14 2
D. 14
Trong Oxyz cho A(0;2;0), B(1;2;0), C(1;0;0), D(0;0;2). Tính bán kính R của mặt cầu ngoại tiếp tứ diện ABCD
Trong không gian với hệ tọa độ Oxyz cho điểm A(2;0;0), B(0;2;0), C(0;0;2), D(2;2;2). Tính bán kính mặt cầu ngoại tiếp khối tứ diện ABCD.
A. 2 .
B. 2 2 .
C. 3 .
D. 2 3 .
Trong không gian với hệ tọa độ Oxyz, cho A(4;0;0), B(0;4;0), C(0;0;4) Bán kính mặt cầu nội tiếp tứ diện OABC bằng:
A. 4 6 + 2 3
B. 3 6 + 2 3
C. 4 3 + 3
D. 5 6 + 2 3
Trong không gian Oxyz, cho điểm A(a;0;0), B(0;b;0), C(0;0;c) sao cho a + b . Phương trình một mặt cầu (S) có diện tích nhỏ nhất ngoại tiếp tứ diện OABC là
Trong không gian Oxyz, cho ba điểm A (3; 0; 0), B (1; 2; 1) và C (2; -1; 2). Biết mặt phẳng qua B, C và tâm mặt cầu nội tiếp tứ diện OABC có một vectơ pháp tuyến là (10; a; b). Tổng a + b là:
A. -2
B. 2
C. 1
D. -1
Trong không gian Oxyz, cho các điểm A, B, C (không trùng O) lần lượt thay đổi trên các trục Ox, Oy, Oz và luôn thỏa mãn điều kiện: tỉ số giữa diện tích của tam giác ABC và thể tích khối tứ diện OABC bằng 3/2. Biết rằng mặt phẳng (ABC) luôn tiếp xúc với một mặt cầu cố định, bán kính của mặt cầu đó bằng:
A. 3.
B. 2.
C. 4.
D. 1.
Trong không gian Oxyz cho A(0;0;2), B(1;1;0) và mặt cầu ( S ) : x 2 + y 2 + ( z - 1 ) 2 = 1 4 . Xét điểm M thay đổi thuộc (S). Giá trị nhỏ nhất của biểu thức M A → 2 + 2 M B → 2 bằng
A. 1 2
B. 3 4
C. 21 4
D. 19 4
Trong không gian Oxyz, cho hai điểm A (1;0;0), B (0;0;2) và mặt cầu (S): x²+y²+z²-2x-2y+1=0. Hỏi có tất cả bao nhiêu mặt phẳng chứa hai điểm A, B và tiếp xúc với (S).
A.3.
B. 0
C. 1
D. 2