Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2 x − 2 y + z = 0 và đường thẳng d : x + 1 1 = y 2 = z − 1 . Gọi là một đường thẳng chứa trong (P) cắt và vuông góc với d. Vectơ u → = a ; 1 ; b là một vectơ chỉ phương của Δ . Tính tổng S = a + b
A. S = 1
B. S = 0
C. S = 2
D. S = 4
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng P : 2 x - 2 y + z = 0 và đường thẳng d : x + 1 1 = y 2 = z - 1 . Gọi ∆ là một đường thẳng chứa trong (P), cắt và vuông góc với d. Véc tơ u → a ; 1 ; b là một véc tơ chỉ phương của ∆ . Tính tổng S = a + b.
A. S = 1
B. S = 0
C. S = 2
D. S = 4
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x + y - 4 z = 0 đường thẳng d: x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A 1 ; 3 ; 1 thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = 1 ; b ; c là một vectơ chỉ phương của đường thẳng ∆ . Tính b + c
A. b + c = - 6 11
B. b + c = 0
C. b + c = 1 4
D. b + c = 4.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + + z - 4 = 0 , mặt cầu S : x 2 + y 2 + z 2 - 8 x - 6 y - 6 z + 18 = 0 và điểm M 1 ; 1 ; 2 ∈ α . Đường thẳng d đi qua M và nằm trong mặt phẳng α cắt mặt cầu (S) tại hai điểm phân biệt A, B sao cho dây cung AB có độ dài nhỏ nhất. Đường thẳng d có một vectơ chỉ phương là
A. u 1 ⇀ = 2 ; - 1 ; - 1
B. u 1 ⇀ = 1 ; 1 ; - 2
C. u 1 ⇀ = 1 ; - 2 ; 1
D. u 1 ⇀ = 0 ; 1 ; - 1
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A(a;0;0), A’(0;0;b). Gọi (P) là mặt phẳng chứa d và d’; H là giao điểm của đường thẳng AA’ và mặt phẳng (P). Một đường thẳng thay đổi trên (P) nhưng luôn đi qua H đồng thời D cắt d và d’ lần lượt tại B, B’. Hai đường thẳng AB, A’B’ cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có vectơ chỉ phương u → = 15 ; - 10 ; - 1 (tham khảo hình vẽ). Tính a+b
A. 8
B. 9
C. -9
D. 6
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng
d : x - 2 1 = y - 5 2 = z - 2 1 , d ' : x - 2 1 = y - 1 - 2 = z - 2 1 và hai điểm A a ; 0 ; 0 , A ' 0 ; 0 ; b . Gọi (P) là mặt phẳng chứa d và d '; H là giao điểm của đường thẳng AA' và mặt phẳng (P). Một đường thẳng ∆ thay đổi trên (P) nhưng luôn đi qua H đồng thời ∆ cắt d và d ' lần lượt là B, B '. Hai đường thẳng AB, A'B' cắt nhau tại điểm M. Biết điểm M luôn thuộc một đường thẳng cố định có vectơ chỉ phương u → = 15 ; - 10 ; - 1 (tham khảo hình vẽ). Tính T= a+b
A. T = 8
B. T = 9
C. T = - 9
D. T = 6
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x − 1 1 = y − 1 2 = z − 2 − 1 và mặt phẳng ( P ) : 2 x + y + 2 z − 1 = 0. Gọi d’ là hình chiếu của đường thẳng d lên mặt phẳng (P), vectơ chỉ phương của đường thẳng d’ là
A. u 3 → ( 5 ; − 16 ; − 13 ) .
B. u 2 → ( 5 ; − 4 ; − 3 ) .
C. u 4 → ( 5 ; 16 ; 13 ) .
D. u 1 → ( 5 ; 16 ; − 13 ) .
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+y-4z=0, đường thẳng d : x - 1 2 = y + 1 - 1 = z - 3 1 và điểm A(1;3;1) thuộc mặt phẳng (P). Gọi ∆ là đường thẳng đi qua A, nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = a ; b ; 1 là một vectơ chỉ phương của đường thẳng ∆. Tính a+2b.
A. 7
B. -3
C. 0
D. 4