Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Trong không gian với hệ tọa độ Oxyz , cho mặt phẳng  P : x + y − 4 z = 0 , đường thẳng d : x − 1 2 = y + 1 − 1 = z − 3 1  và điểm A 1 ; 3 ; 1  thuộc mặt phẳng P .  Gọi Δ  là đường thẳng đi qua A, nằm trong mặt phẳng (P) và cách d một khoảng cách lớn nhất. Gọi u → = a ; b ; 1  là một VTCP của đường thẳng Δ . Tính a + 2 b .  

A.  a + 2 b = − 3.

B.  a + 2 b = 0.

C.  a + 2 b = 4.

D.  a + 2 b = 7.

Cao Minh Tâm
5 tháng 1 2017 lúc 6:21

Đáp án A

Phương pháp: 

Đánh giá, tìm vị trí của Δ  để khoảng cách giữa 2 đường thẳng là lớn nhất.

Cách giải:

Kẻ AH vuông góc d, qua A kẻ d ' / / d .  

Dựng mặt phẳng (Q) chứa d’ và vuông góc AH, (Q) cắt (P) tại Δ 0 .  Ta sẽ chứng minh Δ 0  thỏa mãn yêu cầu đề bài (cách d một khoảng cách lớn nhất).

Vì A H ⊥ d A H ⊥ Q ⇒ d / / Q ⇒ d d ; Q = A H = d d ; Δ 0

 (do Δ 0 ⊂ Q )

Lấy Δ  là đường thẳng bất kì qua A và nằm trong (P). Gọi (Q’) là mặt phẳng chứa d’ và

Δ ⇒ d / / Q '

⇒ d d ; Q ' = d H ; Q '  

Kẻ

H A ' ⊥ Q ' ,   A ' ∈ Q ' ⇒ d d ; Q ' = H A ' = d d ; Δ .  

Ta có: H A ' ≤ H A ⇒  Khoảng cách từng d đến Δ  lớn nhất bằng AH khi Δ  trùng Δ 0.

*) Tìm tọa độ điểm H:

Gọi α :  mặt phẳng qua A vuông góc d 

⇒ α : 2. x − 1 − 1 y − 3 + 1 z − 1 = 0 ⇔ 2 x − y + z = 0

H = d ∩ α ⇒ x − 1 2 = y + 1 − 1 = z − 3 1 = 2 x − 2 − y − 1 + z − 3 4 + 1 + 1 = 2 x − y + z − 6 6 = 0 − 6 6 = − 1  

⇒ x = − 1 y = 0 z = 2 ⇒ H − 1 ; 0 ; 2  

⇒ A H → − 2 ; − 3 ; 1  

Δ 0   có 1 VTCP: u → = A H → ; n P → ,  với n P → = 1 ; 1 ; − 4  

⇒ u → = 11 ; − 7 ; 1 ⇒ a = 11 ; b = − 7 ⇒ a + 2 b = − 3.  


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết