Chọn C.
Phương pháp: Lập hệ phương trình tìm a,b,c.
Cách giải: Từ giả thiết ta có hệ:
Chọn C.
Phương pháp: Lập hệ phương trình tìm a,b,c.
Cách giải: Từ giả thiết ta có hệ:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y-z-3=0 và hai điểm A(1;1;1) và B(-3;-3;-3). Mặt cầu (S) đi qua hai điểm A, B tiếp xúc với (P) tại điểm C. Biết rằng C luôn thuộc đường tròn cố định. Tính bán kính đường tròn đó.
A. R=4
B. R=6
C. R = 2 33 3
D. R = 2 11 3
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x − 1 2 + y − 2 2 + z − 3 2 = 16 và các điểm A 1 ; 0 ; 2 , B − 1 ; 2 ; 2 . Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax+by+cz+3=0. Tính tổng T=a+b+c
A. 3
B. -3
C. 0
D. -2
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 16 và các điểm A(1;0;2), B(-1;2;2). Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng ax+by+cz+3=0. Tính tổng T=a+b+c
A. 3
B. -3
C. 0
D. -2
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x − 1 2 + y − 2 2 + z − 3 2 = 16 và các điểm A 1 ; 0 ; 2 , B − 1 ; 2 ; 2 . Gọi (P) là mặt phẳng đi qua hai điểm A, B sao cho thiết diện của mặt phẳng (P) với mặt cầu (S) có diện tích nhỏ nhất. Khi viết phương trình (P) dưới dạng a x + b y + c z + 3 = 0. Tính tổng T = a + b + c
A. 3
B. -3
C. 0
D. -2
Trong không gian với hệ tọa độ Oxyz cho điểm A(0;1;2) mặt phẳng α : x - y + z - 4 = 0 và S : x - 3 2 + y - 1 2 + z - 2 2 = 16 . Gọi (P) là mặt phẳng đi qua A vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục xOx' là
A. M - 1 3 ; 0 ; 0
B. M 1 ; 0 ; 0
C. M - 1 2 ; 0 ; 0
D. M 1 3 ; 0 ; 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+y-z-3=0 và hai điểm A(1;1;1), B(-3;-3;-3). Mặt cầu (S) đi qua A, B và tiếp xúc với (P) tại C. Biết rằng C luôn thuộc một đường tròn cố định. Tìm bán kính R của đường tròn đó.
A. R = 4
B. R = 2 33 3
C. R = 2 11 3
D. R = 6
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+y+z = 0 và hai điểm A(1;1;1),B(-3;-3;-3) Mặt cầu (S) đi qua A, B và tiếp xúc với (P) tại C. Biết rằng C luôn thuộc một đường tròn cố định. Tìm bán kính R của đường tròn đó.
A. R=4
B. R = 2 33 3
C. R = 2 11 3
D. R=6
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + y − z − 3 = 0 và hai điểm A 1 ; 1 ; 1 và B − 3 ; − 3 ; − 3 . Mặt cầu (S) đi qua hai điểm A, B và tiếp xúc với (P) tại điểm C . Biết rằng C luôn thuộc đường tròn cố định. Tính bán kính đường tròn đó.
A. R = 4
B. R = 6
C. R = 2 33 3 .
D. R = 2 11 3 .