Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( P ) : x − y + 2 z + 1 = 0 và ( Q ) : 2 x + y + z − z = 0. Gọi (S) là mặt cầu có tâm thuộc Ox, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính r. Xác định r sao cho chỉ có duy nhất một mặt cầu (S) thỏa mãn điều kiện bài toán
A. r = 3 2 2 .
B. r = 10 2 .
C. r = 3 .
D. r = 14 2 .
Trong không gian tọa độ Oxyz, cho mặt cầu (S): ( x - 2 ) 2 + y 2 + ( z + 1 ) 2 = 9 và mặt phẳng (P): 2x-y-2z-3=0. Biết rằng mặt cầu (S) cắt (P) theo giao tuyến là đường tròn (C). Tính bán kính R của (C)
Trong không gian với hệ tọa độ Oxyz, cho điểm I(1;2;-2) và mặt phẳng (P): 2x+2y+z+5=0. Phương trình mặt cầu tâm I cắt mặt phẳng (P) theo giao tuyến là một đường tròn có diện tích bằng 16 π là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : x - 1 2 + y - 2 2 + z - 2 2 = 9 và mặt phẳng (P): 2x-y-2z+1=0. Biết (P) cắt (S) theo giao tuyến là đường tròn có bán kính r. Tính r.
A. r = 3
B. r = 2 2
C. r = 3
D. r = 2
Trong không gian với hệ tọa độ Oxyz. Cho điểm I(1;2;-2) và mặt phẳng (P): 2x+2y+z+5=0. Viết phương trình mặt cầu tâm I cắt mặt phẳng (P) theo giao tuyến là một đường tròn có diện tích bằng 16 π
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(1;-1;1) và mặt phẳng (P): 2x - y + 2z + 1 = 0. Biết (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng 3. Viết phương trình của mặt cầu (S).
A. ( x - 1 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 13
B. ( x - 1 ) 2 + ( y + 1 ) 2 + ( z - 1 ) 2 = 169
C. ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 1 ) 2 = 169
D. ( x + 1 ) 2 + ( y - 1 ) 2 + ( z + 1 ) 2 = 169
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I (1;0;-1) và cắt mặt phẳng (P): 2x+y-2z-16=0 theo giao tuyến là một đường tròn có bán kính bằng 3. Phương trình của mặt cầu (S) là:
A. (x-1)²+y²+ (z+1)²=25.
B.(x+1)²+y²+ (z-1)²=25
C. (x-1)²+y²+ (z+1)²=9.
D.(x+1)²+y²+ (z-1)²=9.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - 2y + 2z - 2 = 0 và điểm I(-1;1;-1). Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5.
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2y+2z-2=0 và điểm I(-1;2;-1). Viết phương trình mặt cầu (S) có tâm I và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 5
A. S : x + 1 2 + y - 2 2 + z + 1 2 = 25
B. S : x + 1 2 + y - 2 2 + z + 1 2 = 16
C. S : x - 1 2 + y + 2 2 + z - 1 2 = 34
D. S : x + 1 2 + y - 2 2 + z + 1 2 = 34
Trong không gian tọa độ Oxyz, cho mặt cầu (S): x2 + y2 + z2 - 2x + 4y - 4z -16 = 0 và mặt phẳng (P): x + 2y - 2z - 2 = 0. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính là:
A. r = 6
B. r = 2 2
C. r = 4
D. r = 2 3