Trong không gian với hệ tọa độ Oxyz, cho hình chóp S . A B C D với S 1 ; - 1 ; 6 , A 1 ; 2 ; 3 , B 3 ; 1 ; 2 , D 2 ; 3 ; 4 . Gọi I là tâm mặt cầu (S) ngoại tiếp hình chóp. Tính khoảng cách d từ I đến mặt phẳng (SAD)
A. d = 6 2
B. d = 21 2
C. d = 3 3 2
D. d = 3 2
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 - 2 x - 4 y + 6 z - 13 = 0 và đường thẳng d : x + 1 1 = y + 2 1 = z - 1 1 . Tọa độ điểm M trên đường thẳng d sao cho từ M có thể kẻ được 3 tiếp tuyến MA, MB, MC đến mặt cầu (S) (A, B, C là các tiếp điểm ) thỏa mãn A M B ^ = 60 ° , B M C ^ = 90 ° ; C M A ^ = 120 ° có dạng M(a;b;c) với a<0. Giá trị T=a+b+c bằng:
A. T=1
B. T = 10 3
C. T=2
D. T=-2
Trong không gian với hệ trục tọa độ Oxyz cho hai điểm A (2;1;3), B (6;5;5). Gọi (S) là mặt cầu đường kính AB Mặt phẳng (P) vuông góc với AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P)) có thể tích lớn nhất, biết rằng (P): 2x + by + cz + d = 0 với b,c,d ∈ Z. Tính S = b + c + d .
A. S = 18
B. S = -18
C. S = -12
D. S = 24
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-1) và mặt phẳng (P) có phương trình x + y + 2 z - 13 = 0 . Mặt cầu (S) đi qua A, tiếp xúc với mặt phẳng (P) và có bán kính nhỏ nhất. Điểm I (a;b;c) là tâm của mặt cầu (S), tính giá trị của biểu thức T = a 2 + 2 b 2 + 3 c 2
A. T = 25
B. T = 30
C. T = 20
D. T = 35
Trong không gian Oxyz, cho mặt phẳng
P : 2 x - y + 2 z - 14 = 0 và mặt cầu
S : x 2 + y 2 + z 2 - 2 x + 4 y + 2 z - 3 = 0 . Gọi tọa độ điểm M (a; b; c) thuộc mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là nhỏ nhất. Tính giá trị biểu thức K = a + b + c.
A. K = -2.
B. K = -5.
C. K = 2.
D. K = 1.
Trong không gian tọa độ Oxyz, cho hai điểm A(2;1;3), B(6;5;5). Gọi (S) là mặt cầu có đường kính AB. Mặt phẳng (P) vuông góc với đoạn AB tại H sao cho khối nón đỉnh A và đáy là hình tròn tâm H (giao của mặt cầu (S) và mặt phẳng (P) có thể tích lớn nhất, biết rằng (P)+2x+by+cz+d=0 với b,c,d∈Z. Tính S=b+c+d.
A. S = -18.
B. S = -11
C. S = -24
D. S = -14
Trong không gian Oxyz, cho hình chóp tứ giác đều SABCO, S(2; 2; 6), A(4; 0; 0), B(4; 4; 0), C(0; 4; 0). Viết phương trình mặt cầu ngoại tiếp hình chóp SABCO
A. ( x - 2 ) 2 + ( y - 2 ) 2 + ( z - 7 3 ) 2 = 121 9
B. ( x + 2 ) 2 + ( y - 2 ) 2 + ( z - 7 3 ) 2 = 121 9
C. ( x - 2 ) 2 + ( y + 2 ) 2 + ( z - 7 3 ) 2 = 121 9
D. ( x - 2 ) 2 + ( y - 2 ) 2 + ( z + 7 3 ) 2 = 121 9
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng P : x - 2 y + 2 z - 3 = 0 và mặt cầu (S) có tâm I(5;-3;5) bán kính R = 2 5 . Từ một điểm A thuộc mặt phẳng (P) kẻ một đường thẳng tiếp xúc với mặt cầu (S) tại điểm B. Tính OA biết rằng AB = 4.
A. OA = 3
B. OA = 11
C. OA = 6
D. OA = 5