Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;2;1); B(3;2;3) , có tâm thuộc mặt phẳng (P):x-y-3=0, đồng thời có bán kính nhỏ nhất, hãy tính bán kính R thuộc mặt cầu (S)?
A. 1
B. 2
C. 2
D. 2 2
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng Δ : x 1 = x + 3 1 = z 2 . Biết rằng mặt cầu (S) có bán kính bằng 2 2 và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ tâm I
A. I(1;-2;2), I(5;2;10)
B. I(1;-2;2), I(0;-3;0)
C. I(5;2;10), I(0;-3;0)
D. I(1;-2;2), I(-1;2;-2)
Trong không gian Oxyz cho đường thẳng d : x - 1 = y - 2 1 = z - 3 2 và hai mặt phẳng α : x + 2 y + 2 z + 1 = 0 , β : 2 x - y - 2 z + 7 = 0 . Mặt cầu (S) có tâm nằm trên đường thẳng d và (S) tiếp xúc với hai mặt phẳng α và β có bán kính là:
A. 2 ∨ 12
B. 4 ∨ 144
C. 2 ∨ 2 3
D. 2 ∨ 2
Trong không gian Oxyz cho đường thẳng d : x - 1 = y - 2 1 = z - 3 2 và hai mặt phẳng α : x + 2 y + 2 z + 1 = 0 , β : 2 x - y - 2 z + 7 = 0 . Mặt cầu (S) có tâm nằm trên đường thẳng d và (S) tiếp xúc với hai mặt phẳng α và β có bán kính là:
A. 2 ∨ 12
B. 4 ∨ 144
C. 2 ∨ 2 3
D. 2 ∨ 2
Trong không gian với hệ tọa độ Oxyz, cho ba điểm
A 0 ; 1 ; 1 , B 3 ; 0 ; - 1 , C 0 ; 21 ; - 19 và mặt cầu
S : x - 1 2 + y - 1 2 + z - 1 2 = 1 ,
M a ; b ; c là điểm thuộc mặt cầu (S) sao cho biểu thức
T = 3 M A 2 + 2 M B 2 + M C 2 đạt giá trị nhỏ nhất. Tính tổng a + b + c
A. a + b + c = 0
B. a + b + c = 12
C. a + b + c = 12 5
D. a + b + c = 14 5
Trong không gian mặt cầu (S) tiếp xúc với 6 mặt của một hình lập phương cạnh a, thể tích khối cầu (S) bằng
A. V = πa 3 24
B. V = πa 3 3
C. V = πa 3 6
D. V = 4 3 πa 3
Trong không gian hệ tọa độ Oxyz, cho mặt phẳng (P):2x+2y-z+3=0 và đường thẳng (d): x - 1 1 = y + 3 2 = z 2 . Gọi A là giao điểm của (d) và (P); gọi M là điểm thuộc (d) thỏa mãn điều kiện MA = 2. Tính khoảng cách từ M đến mặt phẳng (P)?
A. 4 9
B. 8 3
C. 8 9
D. 2 9
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy và SA=3 Mặt phẳng α qua A và vuông góc với SC cắt các cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tự diện CMNP.
A. V = 64 2 π 3
B. V = 125 π 6
C. V = 32 π 3
D. V = 10 Sπ 3
Trong không gian với hệ trục tọa độ Oxyz viết phương trình mặt phẳng (P) song song và cách đều đường thẳng d 1 : x - 2 - 1 = y 1 = z 1 và d 2 : x 2 = y - 1 - 1 = z - 2 - 1
A. (P):2x-2z+1=0
B. (P):2y-2z+1=0
C. (P):2x-2y+1=0
D. (P):2y-2z-1=0