Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x+y+z-2=0, (Q): x+2y-z+3=0 và điểm A(1;0;4). Phương trình đường thẳng qua A và cùng song song với (P) và (Q) là:
A. d : x - 1 - 3 = y 2 = z - 4 1
B. d : x - 1 3 = y 1 = z - 4 1
C. d : x - 1 - 3 = y - 1 = z - 4 1
D. d : x - 1 - 3 = y 2 = z - 4 - 1
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3) và đường thẳng (d): x - 2 2 = y + 2 - 1 = z - 3 1 . Gọi điểm B thuộc trục Ox sao cho AB vuông góc với đường thẳng (d). Khoảng cách từ B đến mặt phẳng ( α ): 2x+2y-z-1=0 là:
A. 2
B. 2 3
C. 1 3
D. 1
Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng d 1 : x - 3 - 1 = y - 3 - 2 = z + 2 1 và d 2 : x - 5 - 3 = y + 1 2 = z - 2 1 và mặt phẳng (P) có phương trình x + 2 y + 3 z - 5 = 0 . Đường thẳng Δ vuông góc với (P) cắt d 1 và d 2 có phương trình là:
A. ∆ : x - 1 1 = y + 1 2 = z 3
B. ∆ : x - 2 1 = y - 3 2 = z - 1 3
C. ∆ : x - 3 1 = y - 3 2 = z + 2 3
C. ∆ : x - 1 3 = y + 1 2 = z 1
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian với hệ tọa độ Oxyz cho hai điểm A(3;3;1), B(0;2;1).và mặt phẳng (P): x + y + z - 7 = 0 . Đường thẳng d nằm trong (P) sao cho mọi điểm của d cách đều hai điểm A, B có phương trình là
A. x = t y = 7 + 3 t z = 2 t
B. x = 2 t y = 7 - 3 t z = t
C. x = t y = 7 - 3 t z = 2 t
D. x = - t y = 7 - 3 t z = 2 t
Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;-2;3) và hai mặt phẳng (P):x+y+z+1=0;(Q):x-y+z-2=0. Phương trình nào dưới đây là phương trình đường thẳng qua A, song song với (P) và (Q).
A. x = 1 + 2 t y = - 2 z = 3 + 2 t
B. x = - 1 + t y = 2 z = - 3 - t
C. x = 1 y = - 2 z = 3 - 2 t
D. x = 1 + t y = - 2 z = 3 - t
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 3 ; 3 ; 1 , B 0 ; 2 ; 1 và mặt phẳng P : x + y + z - 7 = 0 . Đường thẳng d nằm trong (P) sao cho mọi điểm của d cách đều hai điểm A, B có phương trình là
A. x = t y = 7 + 3 t z = 2 t
B. x = 2 t y = 7 - 3 t z = t
C. x = t y = 7 - 3 t z = 2 t
D. x = - t y = 7 - 3 t z = 2 t
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x + y + z - 7 = 0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
A. (Q): 5x+y-6z+7=0
B. (Q): 5x-y-6z+7=0
C. (Q): 5x+y-6z-7=0
D. (Q): 5x-y-6z+-=0
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x + 3 1 = y - 2 - 1 = z - 1 2 , d 2 : x - 2 2 = y - 1 1 = z + 1 1 và mặt phẳng P : x + 3 y + 2 z - 5 = 0 Đường thẳng vuông góc với (P), cắt cả d 1 và d 2 có phương trình là:
A. x + 7 1 = y - 6 3 = z + 7 2
B. x + 3 1 = y + 2 3 = z - 1 2
C. x 1 = y 3 = z + 2 2 .
D. x + 4 1 = y - 3 3 = z + 1 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;2;–2) và B(3; –1;0). Đường thẳng AB cắt mặt phẳng (P): x + y – z + 2 = 0 tại điểm I. Tỉ số I A I B bằng:
A. 2
B. 6
C. 3
D. 4