Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y 1 = z - 2 và hai điểm A(2;1;0), B(-2;3;2). Viết phương trình mặt cầu đi qua A,B và có tâm I thuộc đường thẳng d.
A. x - 3 2 + y - 1 2 + z + 2 2 = 5
B. x - 1 2 + y - 1 2 + z + 2 2 = 17
C. x + 1 2 + y + 1 2 + z - 2 2 = 17
D. x + 3 2 + y + 1 2 + z - 2 2 = 5
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 2 = y 1 = z - 2 và hai điểm A ( 2;10 ); B ( -2;3;2 ). Viết phương trình mặt cầu đi qua A, B và có tâm thuộc đường thẳng d.
A. x + 1 2 + y + 1 2 + z - 2 2 = 17
B. x + 1 2 + y 2 + z 2 = 17
C. x - 3 2 + y - 1 2 + z - 2 2 = 17
D. x - 5 2 + y - 2 2 + z + 4 2 = 17
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M 2 ; 1 ; 0 , N - 2 ; 3 ; 2 và cho đường thẳng ∆ : x - 1 2 = y 1 = z - 2 . Mặt cầu (S) có tâm thuộc ∆ và đi qua điểm M, N có phương trình là
A. S : x - 1 2 + y - 1 2 + z - 2 2 = 17
B. S : x + 1 2 + y + 1 2 + z - 2 2 = 17
C. S : x + 1 2 + y + 1 2 + z + 2 2 = 17
D. S : x + 1 2 + y - 1 2 + z - 2 2 = 17
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A (1;-1;2) và đường thẳng d : x 1 = y 2 = z + 2 - 2 . Mặt cầu (S) tâm A cắt đường thẳng d tại 2 điểm phân biệt B, C sao cho diện tích tam giác ABC bằng 12. Phương trình mặt cầu (S) là:
A. S : x - 1 2 + y + 1 2 + z - 2 2 = 36
B. S : x - 1 2 + y + 1 2 + z - 2 2 = 25
C. S : x - 1 2 + y + 1 2 + z - 2 2 = 144
D. S : x - 1 2 + y + 1 2 + z - 2 2 = 64
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y + 2 1 = z 1 và mặt phẳng P : 2 x + y - 2 z + 2 = 0 . Gọi (S) là mặt cầu có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2;-1;0). Biết tâm của mặt cầu có cao độ không nhỏ hơn 1, phương trình mặt cầu (S) là
A. x - 2 2 + y - 1 2 + z - 1 2 = 1
B. x + 2 2 + y + 1 2 + z - 1 2 = 1
C. x - 2 2 + y - 1 2 + z + 1 2 = 1
D. x - 2 2 + y + 1 2 + z - 1 2 = 1
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 1 = y - 1 2 = z + 1 - 1 và điểm A(5;4;-2). Phương trình mặt cầu đi qua điểm A và có tâm là giao điểm của d với mặt phẳng (Oxy) là
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 9 . Đường thẳng d cắt mặt cầu (S) tại hai điểm A và B biết tiếp diện của (S) tại A và B vuông góc. Khi đó độ dài AB là:
A. 9 2
B. 3
C. 3 2
D. 3 2 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 5 ; 1 ; - 1 , B 14 ; - 3 ; 3 và đường thẳng ∆ có vectơ chỉ phương = 1 ; 2 ; 2 . Gọi C, D lần lượt là hình chiếu của A,B lên ∆ . Mặt cầu qua hai điểm C, D có diện tích nhỏ nhất là
A. 44 π
B. 6 π
C. 9 π
D. 36 π
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 2 2 = y - 1 = z 4 và mặt cầu (S): x - 1 2 + y - 2 2 + z - 1 2 = 2 . Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với (S).Gọi M và N là tiếp điểm. Độ dài đoạn MN bằng
A. 2 2
B. 4 3 2
C. 2 3 3
D. 4