Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-y-z-1=0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 cho A(1;1;-2) Đường thẳng đi qua A, song song với (P) và vuông góc với d có phương trình là



![]()
Trong không gian với trục tọa độ Oxyz, cho đường thẳng
∆ : x - 1 2 = y - 1 = z + 2 3 và mặt phẳng ( α ): x-2y+2z-3=0.
Đường thẳng đi qua O, vuông góc với ∆ và song song với
mặt phẳng ( α ) có phương trình

![]()
![]()
![]()
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;-1;-2) và đường thẳng d có phương trình x - 1 1 = y - 1 - 1 = z - 1 1 . Gọi (P) là mặt phẳng đi qua điểm A, song song với đường thẳng d và khoảng cách từ đường thẳng d tới mặt phẳng (P) là lớn nhất. Khi đó, mặt phẳng (P) vuông góc với mặt phẳng nào sau đây?
![]()
![]()
![]()
![]()
Trong không gian với hệ tọa độ Oxyz cho điểm A(1;-1;1) mặt phẳng (P):x-2y+z-1=0 và đường thẳng d : x 1 = y - 2 2 = z - 1 - 1 . Viết phương trình đường thẳng đi qua A, song song với mặt phẳng (P) cắt đường thẳng d.
![]()
![]()
![]()

Cho đường thẳng d: x = 1 + t y = 2 t z = - 1 và mặt phẳng (P): 2x+y-2z-1=0. Viết phương trình đường thẳng đi qua M(1;2;1), song song với (P) và vuông góc với đường thẳng d.




Trong không gian với hệ tọa độ Oxyz , cho đường thẳng d: z = 1 + t y = 2 t z = - 1 , điểm M(1;2;−1) và mặt phẳng . Đường thẳng Δ đi qua M , song song với (P) và vuông góc với d có phương trình là
![]()
![]()
![]()

Trong không gian Oxyz, cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 và mặt phẳng (P):x-y-z-1=0. Phương trình đường thẳng Δ đi qua A (1;1;-2), song song với mặt phẳng (P) và vuông góc với đường thẳng d là:
![]()
![]()
![]()

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+y-z+9=0, đường thẳng d : x - 3 1 = y - 3 3 = z 2 và điểm A(1;2;-1). Viết phương trình đường thẳng ∆ đi qua điểm A cắt d và song song với mặt phẳng (P).
![]()
![]()
![]()
![]()
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng ( P ) : x + 2 y + 2 z - 4 = 0 . Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là



