Chọn B.
Gọi B, C, D lần lượt là hình chiếu của A lên các trục Ox , Oy , Oz ⇒ B ( 1 ; 0 ; 0 ) C ( 0 ; - 1 ; 0 ) D ( 0 ; 0 ; 2 )
Suy ra phương trình mặt phẳng ( Q ) : x 1 + y - 1 + z 2 = 1 ⇔ 2 x - y + z - 2 = 0 .
Chọn B.
Gọi B, C, D lần lượt là hình chiếu của A lên các trục Ox , Oy , Oz ⇒ B ( 1 ; 0 ; 0 ) C ( 0 ; - 1 ; 0 ) D ( 0 ; 0 ; 2 )
Suy ra phương trình mặt phẳng ( Q ) : x 1 + y - 1 + z 2 = 1 ⇔ 2 x - y + z - 2 = 0 .
Trong không gian với hệ trục tọa độ Oxyz, phương trình mặt phẳng (P) đi qua điểm A(2;1;-3), đồng thời vuông góc với hai mặt phẳng (Q): x+y+3z=0, (R): 2x-y+z=0 là
A. 4x + 5y – 3z + 22 = 0.
B. 4x – 5y – 3z -12 =0
C. 2x + y – 3z – 14 = 0.
D. 4x + 5y – 3z – 22 = 0
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x+y+z-2=0, (Q): x+2y-z+3=0 và điểm A(1;0;4). Phương trình đường thẳng qua A và cùng song song với (P) và (Q) là:
A. d : x - 1 - 3 = y 2 = z - 4 1
B. d : x - 1 3 = y 1 = z - 4 1
C. d : x - 1 - 3 = y - 1 = z - 4 1
D. d : x - 1 - 3 = y 2 = z - 4 - 1
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M (-2;-1;3). Phương trình mặt phẳng đi qua các điểm lần lượt là hình chiếu của điểm M lên các trục tọa độ Ox, Oy, Oz là:
A. x - 2 + y - 1 + z 3 = 1
B. x - 2 + y - 1 + z 3 = 0
C. x 2 + y 1 + z - 3 = 1
D. x 2 + y 1 + z - 3 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;-1;2) và mặt phẳng P : 2 x - y + z + 1 = 0 . Mặt phẳng (Q) đi qua điểm A và song song với (P) có phương trình là
A. Q : 2 x - y + z - 5 = 0
B. Q : 2 x - y + z = 0
C. Q : x + y + z - 2 = 0
D. Q : 2 x + y - z + 1 = 0
Trong không gian tọa độ Oxyz, cho đường thẳng x - 1 1 = y - 2 - 2 = z + 1 - 1 và mặt phẳng (P):2x - y - 2z - 2018 = 0. Phương trình mặt phẳng (Q) chứa đường thẳng D và tạo với (P) một góc nhỏ nhất cắt các trục tọa độ lần lượt tại các điểm A, B, C. Thể tích tứ diện O.ABC là:
A. 1 6
B. 32 3
C. 32 6
D. 64 3
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;1;3). Mặt phẳng (P) đi qua A và song song với mặt phẳng (Q): x+2y+3z+2 = 0 có phương trình là
A. x+2y+3z - 9 = 0
B. x+2y+3z - 13 = 0
C. x+2y+3z+5 = 0
D. x+2y+3z+13 = 0
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P):x–y+z -1= 0 và (Q):2x+y+1= 0. Viết phương trình mặt phẳng đi qua A(1;-1;-2) vuông góc với hai mặt phẳng (P) và (Q).
A. x+2y+3z+7=0.
B. x-2y+3z+3=0.
C. x+2y-3z–5=0.
D. x–2y–3z-9=0.
Trong không gian với hệ tọa độ Oxyz cho điểm A(2;-1;0) và mặt phẳng ( P ) : x - 2 y + z + 2 = 0 . Gọi I là hình chiếu vuông góc của A trên mặt phẳng (P). Phương trình mặt cầu đi qua A và có tâm I là
A. x + 1 2 + y + 1 2 + z + 1 2 = 6
B. x + 1 2 + y - 1 2 + z + 1 2 = 6
C. x - 1 2 + y - 1 2 + z + 1 2 = 6
D. x + 1 2 + y + 1 2 + z - 1 2 = 6
Trong không gian với hệ tọa độ Oxyz cho điểm \ A 1 ; - 1 ; 2 và mặt phẳng P : 2 x - y + z + 1 = 0 . Mặt phẳng (Q) đi qua điểm A và song song với (P). Phương trình mặt phẳng (Q) là
A. 2 x - y + z = 0
B. x + y + z - 2 = 0
C. 2 x + y - z + 1 = 0
D. 2 x - y + z - 5 = 0