Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : x - 2 2 = y - 1 = z 4 và mặt cầu (S): (x-1)2+ (y-2)2 + (z-1)2=2. Hai mặt phẳng (P), (Q) chứa d và tiếp xúc với (S). Gọi M và N là tiếp điểm. Độ dài đoạn thẳng MN bằng
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(2;1;-2) và N(4;-5;1). Tìm độ dài đoạn thẳng MN
A. 7
B. 7
C. 41
D. 49
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 2 2 = y - 1 = z 4 và mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 2. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với (S). Gọi M,N là tiếp điểm. Tính độ dài đoạn thẳng MN.
A. 2 2
B. 4 3
C. 6
D. 4
Trong không gian với hệ tọa độ Oxyz, cho hai điểm M( 1; -1; -2), N(3; 5; 7). Tính tọa độ của véc tơ M N → .
A. M N → = ( 2 ; 9 ; 6 )
B. M N → = ( 2 ; 6 ; 9 )
C. M N → = ( 6 ; 2 ; 9 )
D. M N → = ( 6 ; 2 ; - 9 )
Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P): 2x+2y-z+16=0 và mặt cầu (s): (x-2)2 + (y+1)2 + (z-3)2=9. Điểm M di động trên trên (S) và điểm N di động trên (P) sao cho độ dài đoạn thẳng MN ngắn nhất. Tọa độ điểm M là
A. M(0;1;-1)
B. M(0;-3;4)
C. M(2;0;1)
D. M(-2;2;-3)
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d: x - 2 2 = y - 1 = z 4 và mặt cầu (S): x - 1 2 + y - 2 2 + z - 1 2 = 2 . Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với (S).Gọi M và N là tiếp điểm. Độ dài đoạn MN bằng
A. 2 2
B. 4 3 2
C. 2 3 3
D. 4
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x-y+z-10=0 và đường thẳng d: x + 2 2 = y - 1 1 = z - 1 - 1 . Đường thẳng Δ cắt (P) và d lần lượt tại M và N sao cho A(1;3;2) là trung điểm MN. Tính độ dài đoạn MN
A. MN=4 33
B. MN=2 26 , 5
C. MN=4 16 , 5
D. MN=2 33
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d tương ứng có phương trình là 2 x - y + 3 z - 3 = 0 và x + 1 - 2 = y - 2 1 = z + 2 - 1 . Biết đường thẳng d cắt mặt phẳng (P) tại điểm M. Gọi N là điểm thuộc d sao cho M N = 3 , gọi K là hình chiếu vuông góc của điểm N trên mặt phẳng (P). Tính độ dài đoạn MK.
A. M K = 7 105
B. M K = 7 4 21
C. M K = 4 21 7
D. M K = 105 7
Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;0;0), B(3;2;0), C(-1;2;4). Gọi M là điểm thay đổi sao cho đường thẳng MA, MB, MC hợp với mặt phẳng (ABC) các góc bằng nhau; N là điểm thay đổi nằm trên mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 1 3 . Tính giá trị nhỏ nhất của độ dài đoạn MN
A. 3 2 2
B. 2
C. 2 2
D. 5
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 - 2 x - 2 y - 2 z - 1 = 0 và mặt phẳng ( P ) : x + y + 2 z + 2 = 0 . Giả sử điểm M thuộc (P) và điểm N thuộc (S) sao cho M N → cùng phương với vectơ . Độ dài nhỏ nhất của đoạn MN là:
A. 2 6 + 4
B. 2 6 + 2
C. 2 6 - 4
D. 6 + 2