Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;0;-2), B(3;-2;-4), C(-2;2;0). Điểm D trong mặt phẳng (Oyz) có tung độ dương và cao độ âm sao cho thể tích của khối tứ diện ABCD bằng 2 và khoảng cách từ D đến mặt phẳng (Oxy) bằng 1 có thể là:
A. D 0 ; − 3 ; − 1
B. D 0 ; 1 ; − 1
C. D 0 ; 2 ; − 1
D. D 0 ; 3 ; − 1
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d có phương trình x − 1 1 = y + 1 2 = z − 2 − 1 và mặt phẳng P : x + 2 y − 2 z + 4 = 0 . Tìm tọa độ điểm M trên d có tung độ dương sao cho khoảng cách từ M đến (P) bằng 2.
A. M 3 ; 3 ; 0
B. M 2 ; 1 ; 1
C. M 0 ; - 3 ; 3
D. M 1 ; - 1 ; 2
Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : x − 1 − 1 = y + 3 2 = z − 3 1 và mặt phẳng P : 2 x + y − 2 z + 9 = 0 . Tọa độ điểm I thuộc d sao cho khoảng cách từ I đến mặt phẳng (P) bằng 2 có dạng I(a;b;c). Giá trị của a + b + c bằng
A. -3 hoặc 9
B. 1 hoặc 2
C. 3 hoặc -9
D. -1 hoặc 2
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có tọa độ các điểm A(1;1;1), B(2;0;2), C(-1;-1;0), D(0;3;4). Trên các cạnh AB, AC, ADlần lượt lấy các điểm B’,C’,D’ sao cho A B A B ' + A C A C ' + A D A D ' = 4 và tứ diện AB’C’D’ có thể tích nhỏ nhất. Phương trình mặt phẳng (B’C’D’) là
A. 16x-40y-44z-39=0.
B. 16x-40y-44z+39=0.
C. 16x+40y+44z-39=0.
D. 16x+40y-44z+39=0.
Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD với A(3;5;-1),B(0;-1;8),C(-1;-7;3),D(1;0;2) và điểm M(1;1;5). Mặt phẳng (P):ax+by+cz-14=0 qua hai điểm D,M cắt cạnh AC và (P) chia khối tứ diện ABCD thành hai phần có thể tích bằng nhau. Giá trị của biểu thức a+b+c bằng
A. 10
B. 16
C. 8
D. -36
Trong không gian với hệ trục tọa độ Oxyz, cho tứ diện ABCD có điểm A(1;1;1) , B(2;0;2), C(-1; -1; 0), D(0;3;4) Trên các cạnh AB, AC, AD lần lượt lấy các điểm B', C', D' thỏa: A B A B ' + A C A C ' + A D A D ' = 4 Viết phương trình mặt phẳng (B'C'D') biết tứ diện AB'C'D' có thể tích nhỏ nhất?
A. 16x+40y+44z-39=0
B. 16x+40y-44z+39=0
C. 16x-40y-44z+39=0
D. 16x-40y-44z-39=0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (α): 2x+y-2z-2 = 0 và đường thẳng có phương trình d : x + a 1 = y + 2 2 = z + 3 2 và điểm A(1/2;1;1) Gọi ∆ là đường thẳng nằm trong mặt phẳng (α) , song song với d, đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng:
A. 7/3
B. 7/2
C. 21 2
D. 3/2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình x 1 = y − 1 2 = z − 1 và mặt phẳng P : x + y + z + 1 = 0 . Tìm tọa độ điểm M trên d có cao độ dương sao cho khoảng cách từ M đến (P) bằng 2 3 .
A. M 2 ; 5 ; − 2
B. M − 4 ; 7 ; 4
C. M 4 ; − 7 ; 4
D. M − 4 ; − 7 ; 4
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;0;0),B(0;1;1),C(1;0;1). Xét điểm D thuộc mặt phẳng Oxy sao cho tứ diện ABCD là một tứ diện đều. Kí hiệu D ( x 0 ; y 0 ; z 0 ) là tọa độ của điểm D. Tổng x 0 + y 0 bằng
A. 0
B. 1
C. 2
D. 3