Chọn A
Viết phương trình mặt phẳng (BCD), bán kính mặt cầu là khoảng cách từ điểm A đến (BCD)
Chọn A
Viết phương trình mặt phẳng (BCD), bán kính mặt cầu là khoảng cách từ điểm A đến (BCD)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + y 2 + ( z - 2 ) 2 = 9 . Mặt phẳng tiếp xúc với mặt cầu (S) tại điểm A ( 1 ; 3 ; 2 ) có phương trình là
A . x + y - 4 = 0
B . y - 3 = 0
C . 3 y - 1 = 0
D . x - 1 = 0
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;1;3) và đường thẳng d có phương trình x - 1 2 = y - 2 - 1 = z z . Mặt phẳng chứa A và d. Viết phương trình mặt cầu tâm O tiếp xúc với mặt phẳng (P).
A. x 2 + y 2 + z 2 = 12 5 .
B. x 2 + y 2 + z 2 = 3 .
C. x 2 + y 2 + z 2 = 6 .
D. x 2 + y 2 + z 2 = 24 5 .
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 9 điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là
A. ( P ) : x + 2 y + 3 z + 6 = 0
B. ( P ) : x + 2 y + z - 2 = 0
C. ( P ) : x - 2 y + z - 6 = 0
D. ( P ) : 3 x + 2 y + 2 z - 4 = 0
Trong không gian với hệ tọa độ Oxyz, cho điểm
A 1 ; 3 ; - 2 và mặt phẳng (P) có phương trình
( P ) : 2 x - y + 2 z - 1 = 0 . Viết phương trình mặt cầu (S)
có tâm A và tiếp xúc với mặt phẳng (P). Tọa độ tiếp
điểm là:
A. H 7 3 ; 7 3 ; - 2 3
B. H 1 3 ; 1 3 ; - 2 3
C. H 7 3 ; - 7 3 ; 2 3
D. H 7 3 ; 7 3 ; 2 3
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y + 2 1 = z 1 và mặt phẳng P : 2 x + y - 2 z + 2 = 0 . Gọi (S) là mặt cầu có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2;-1;0). Biết tâm của mặt cầu có cao độ không nhỏ hơn 1, phương trình mặt cầu (S) là
A. x - 2 2 + y - 1 2 + z - 1 2 = 1
B. x + 2 2 + y + 1 2 + z - 1 2 = 1
C. x - 2 2 + y - 1 2 + z + 1 2 = 1
D. x - 2 2 + y + 1 2 + z - 1 2 = 1
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P):x-y-z+3=0 và điểm A(0;1;2), đường thẳng d: x - 1 1 = y + 3 - 2 = z - 1 1 . Mặt cầu ( S 1 ) , ( S 2 ) cùng tiếp xúc với (P) tại A và tiếp xúc với đường thẳng d. Tổng bán kính của hai mặt cầu bằng
A. 3 + 11
B. 12 3
C. 3 3
D. 10 3