Trong không gian với hệ tọa độ Oxyz, mặt phẳng(α) đi qua điểm M(1;2;-3) và nhận =(1;-2;3) làm véc-tơ pháp tuyến có phương trình là:
A. x-2y-3z+6=0
B. x-2y-3z-6=0
C. x-2y+3z-12=0
D. x-2y+3z+12=0.
Trong không gian Oxyz cho A (1;2;-1), B (3;1;-2), C (2;3;-3) và mặt phẳng (P): x-2y+2z-3=0. M (a;b;c) là điểm thuộc mặt phẳng (P) sao cho biểu thức MA²+MB²+MC² có giá trị nhỏ nhất. Xác định a+b+c.
A. -3
B. -2
C. 2
D. 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-y-3z+2=0. Tìm 1 vec tơ pháp tuyến của (P)
A. (-4;2;6)
B. (2;-1;3)
C. (-2;1;-3)
D. (2;1;-3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+2y+z-4=0. Trong các vec tơ sau vec tơ nào không phải là véc tơ pháp tuyến của (P)?
A. n → = - 1 ; - 2 ; 1
B. n → = 1 ; 2 ; 1
C. n → = - 2 ; - 4 ; - 2
D. n → = 1 2 ; 1 ; 1 2
Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P): x - 2y + 3z +3 = 0. Trong các véc tơ sau véc tơ nào là véc tơ pháp tuyến của (P)?
A. n → = ( 1 ; 2 ; - 3 )
B. n → = ( - 1 ; 2 ; 3 )
C. n → = ( 1 ; 2 ; 3 )
D. n → = ( 1 ; - 2 ; 3 )
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : x + 2 y - 3 z + 5 = 0 . Véc tơ nào sau đây là véc tơ pháp tuyến của mặt phẳng (P)?
Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng qua A(1;2;-1) có một véc-tơ pháp tuyến = (2;0;0) có phương trình là:
A. y + z = 0
B. y + z - 1 = 0
C. x - 1 = 0
D. 2x - 1 = 0.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2z+3=0. Vec tơ nào dưới đây là một vecto pháp tuyến của (P).
A. (1;0;-2)
B. (1;-2;0)
C. (1;-1;3)
D. (3;-2;1)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) đi qua điểm A(1;-1;2) và có một véc tơ pháp tuyến n → = ( 2 ; 2 ; - 1 ) . Phương trình của (P) là:
A. 2x + 2y - z - 7 = 0
B. 2x + 2y - z + 2 = 0
C. 2x + 2y - z - 6 = 0
D. 2x + 2y - z - 2 = 0