Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 3x-z+2=0. Vec tơ nào sau đây là 1 vecto pháp tuyến của (P)
A. (3;0;-1)
B. (3;-1;0)
C. (3;-1;2)
D. (-1;0;-1)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( α ): 2x+3y-4z+5=0. Vecto nào sau đây là một vec tơ pháp tuyến của mặt phẳng
A. (2;3;-4)
B. (2;3;5)
C. (2;3;4)
D. (-4;3;2)
Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng đi qua điểm A 1 ; − 2 ; 0 và vec tơ pháp tuyến n → = 2 ; − 1 ; 3 là
A. x − 2 y − 4 = 0
B. 2 x − y + 3 z − 4 = 0
C. 2 x − y + 3 z = 0
D. 2 x − y + 3 z + 4 = 0
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 4y-6z+7=0. Vec tơ nào là vecto pháp tuyến của (P)
A. (0;6;4)
B. (4;-6;7)
C. (4;0;-6)
D. (0;2;-3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2z+z+2017=0. Vecto nào dưới đây là một vecto pháp tuyến của (P)
A. (1;-1;4)
B. (1;-2;2)
C. (2;2;1)
D. (-2;2;-1)
Trong không gian tọa độ Oxyz, cho điểm A(2;-1;3), B(4;0;1) và C(-10;5;3). Vecto nào dưới đây là véc tơ pháp tuyến của mặt phẳng (ABC) ?
A. (1;8;2)
B. (1;2;0)
C. (1;2;2)
D. (1;-2;2)
Trong không gian với hệ tọa độ Oxyz, mặt phẳng mx+ny+2z+1=0 có một vec tơ pháp tuyến là n → ( 3 ; 2 ; 1 ) khi:
Trong không gian với hệ trục tọa độ Oxyz, một vecto pháp tuyến của mặt phẳng (P): 2x-3z+4=0. Véc tơ nào dưới đây vuông góc với mặt phẳng (P)?
A. (3;0;2)
B. (2;-3;0)
C. (2;-3;4)
D. (2;0;-3)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+2y+z-4=0. Trong các vec tơ sau vec tơ nào không phải là véc tơ pháp tuyến của (P)?
A. n → = - 1 ; - 2 ; 1
B. n → = 1 ; 2 ; 1
C. n → = - 2 ; - 4 ; - 2
D. n → = 1 2 ; 1 ; 1 2