Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng có phương trình d: x - 2 1 = y - 1 1 = z - 1 - 1 Xét mặt phẳng (P): x + m y + m 2 - 1 z - 7 = 0 với m là tham số thực. Tìm m sao cho đường thẳng d song song với mặt phẳng (P)
A. m = 1
B. m = -1
C. m = -1 và m = 2
D. m = 2
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong không gian với hệ trục tọa độ Oxyz cho đường thẳng d : x - 3 1 = y - 3 3 = z 2 , mặt phẳng (α): x+y-z+3=0 và điểm A (1;2;-1). Viết phương trình đường thẳng Δ đi qua A cắt d và song song với mặt phẳng (α).
Trong không gian với trục tọa độ Oxyz, cho đường thẳng
∆ : x - 1 2 = y - 1 = z + 2 3 và mặt phẳng ( α ): x-2y+2z-3=0.
Đường thẳng đi qua O, vuông góc với ∆ và song song với
mặt phẳng ( α ) có phương trình
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 5 2 = y + 7 2 = z - 12 - 1 và mặt phẳng ( α ) : x+2y-3z-3=0. Gọi M là giao điểm của d với ( α ) , A thuộc d sao cho A M = 14 . Tính khoảng cách từ A đến mặt phẳng ( α )
A. 2
B. 3.
C. 6.
D. 14
Trong không gian Oxyz, cho hai mặt phẳng ( α ) : x + y + z - 1 = 0 và ( β ) : 2 x - y + m z - m + 1 = 0 , với m là tham số thực. Giá trị của m để ( α ) ⊥ ( β ) là
A. -1
B. 0
C. 1
D. -4
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x - 1 2 + y - 2 2 + z - 3 2 = 4 . Xét đường thẳng d : x = 1 + t y = - m t z = ( m - 1 ) t với m là tham số thực. Giả sử (P) và (P') là hai mặt phẳng chứa d, tiếp xúc với (S) lần lượt tại T và T'. Khi m thay đổi, tính giá trị nhỏ nhất của độ dài đoạn thẳng TT'.
A. 2
B. 2 11 3
C. 4 13 5
D. 2 2
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A 1 2 ; 1 ; 1 . Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 3
B. 7 2
C. 21 2
D. 3 2
Trong không gian Oxyz, cho hai mặt phẳng α : x+y+z-1=0và β : 2x-y+mz-m+1=0, với m là tham số thực. Giá trị của m để α ⊥ β là
A. -1
B. 0
C. 0
D. -4
Trong không gian với hệ trục tọa độ Oxyz , cho hai mặt phẳng α : x+y-z+1=0 và β : -2x+my+2z-2=0. Tìm m để α và β song song
A. Không tồn tại m
B. m=-2
C. m=2
D. m=5