Đáp án A
Phương trình của hai mặt phẳng (Oxy) và (Oxz) lần lượt là z = 0 và y = 0.
Điểm M(x ;y ;z) cách đều hai mặt phẳng đó khi và chỉ khi

Đáp án A
Phương trình của hai mặt phẳng (Oxy) và (Oxz) lần lượt là z = 0 và y = 0.
Điểm M(x ;y ;z) cách đều hai mặt phẳng đó khi và chỉ khi

Trong không gian Oxyz, tập hợp các điểm M cách đều hai mặt phẳng (P): 2x + 3y + z - 1 = 0 và (Q): 3x + y + 2z - 3 = 0 là hai mặt phẳng có phương trình là:
A. x - 2y + z - 2 = 0 và 5x + 4y + 4z - 4 = 0
B. x - 2y + z - 2 = 0 và 5x + 4y + 3z - 4 = 0
C. x - 3y + z - 2 = 0 và 5x + 4y + 3z - 4 = 0
D. x + 2y + z - 2 = 0 và 5x + 4y + 3z - 4 = 0
Trong hệ trục tọa độ Oxyz, cho d là giao tuyến của hai mặt phẳng x - y + 2z -1 = 0 và 2x - z + 3 = 0. Mặt phẳng (P) đi qua d và vuông góc với mặt phẳng (Oyz) có phương trình là
A. -3y + 5z + 5 = 0
B. 2y - 5z + 5 = 0
C. -3y + 5z = 0
D. 2x - 5y + 5 = 0
Trong không gian với hệ tọa độ Oxyz, điểm nào trong các điểm sau đây thuộc cả hai mặt phẳng (P): x-3y-z+4=0 và (Q): 2x-y+2z-5=0 ?
![]()
![]()
![]()
![]()
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
(P): x-2y+2z=0. (Q): x-2y+3z-5=0. Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
![]()
![]()
![]()
![]()
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + y -2z - 1 = 0 và đường thẳng d: x - 2 1 = y - 2 1 = z - 2 . Tọa độ giao điểm của d và là

B. (1;0;0)
C. (2;2;0)
![]()
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d 1 : x + 3 1 = y - 2 - 1 = z - 1 2 , d 2 : x - 2 2 = y - 1 1 = z + 1 1 , và mặt phẳng (P):x+3y+2z-5=0. Đường thẳng vuông góc với (P), cắt cả d 1 và d 2 có phương trình là:
![]()
![]()

![]()
Trong không gian với hệ trục tọa độ Oxyz , cho hai mặt phẳng α : x+y-z+1=0 và β : -2x+my+2z-2=0. Tìm m để α và β song song
A. Không tồn tại m
B. m=-2
C. m=2
D. m=5
Trong không gian Oxyz, cho hai mặt phẳng (P): x+y-z+5=0 và (Q): 2x+2y-2z+3=0 Khoảng cách giữa và bằng

![]()


Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
d: x - 1 2 = y + 1 3 = z - 3 - 1 và mặt phẳng (P): x + 2y - 2z = 0.
Phương trình mặt cầu (S) có tâm tiếp xúc và cách (P) một
khoảng bằng 1
![]()
![]()
![]()
![]()
Trong không gian Oxyz, cho hai mặt phẳng (P) và (Q) lần lượt có phương trình là x + my + (m + 3)z + 1 = 0; x - y + 2z = 0, trong đó m là tham số. Với những giá trị nào của m thì mặt phẳng (P) vuông góc với mặt phẳng (Q)?
A. m = -1
B. m = 0
C. m = -7
D. Không tồn tại m