Trong không gian (Oxyz), cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 4 và điểm A(1;1;-1). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu (S) theo ba giao tuyến là các đường tròn ( C 1 ) , ( C 2 ) , ( C 3 ) . Tổng bán kính của ba đường tròn ( C 1 ) , ( C 2 ) , ( C 3 ) là
A. 2 + 2 3
B. 3 3
C. 4 + 3
D. 6
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 4 và điểm A(1;1;-1). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu (S) theo ba giao tuyến là các đường tròn ( C 1 ) , ( C 2 ) , ( C 3 ) . Tính tổng diện tích của ba đường tròn ( C 1 ) , ( C 2 ) , ( C 3 )
A. 4 π
B. 12 π
C. 11 π
D. 3 π
Trong không gian Oxyz, mặt cầu (S)đi qua điểm A(2;-2;5) và tiếp xúc với ba mặt phẳng (P): x=1; (Q): y=-1 và (R): z=1 có bán kính bằng
A. 3
B. 1
C. 2 3
D. 3 3
Trong không gian Oxyz, cho mặt cầu (S): (x-1)2+ (y-2)2+ z2=25 và một điểm A(a,b,c) nằm trên mặt cầu (S). Từ A vẽ ba tia đôi một vuông góc với nhau cắt mặt cầu (S) tại điểm thứ hai là M, N, P. Biết rằng mặt phẳng (MNP) luôn đi qua một điểm cố định K(1;1;3). Giá trị của biểu thức a + 7b + c bằng
A. 3
B. 4
C. 6
D. 9
Trong không gian với hệ trục toạ độ (Oxyz), cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 9 điểm A(0;0;2). Phương trình mặt phẳng (P) đi qua A và cắt mặt cầu (S) theo thiết diện là hình tròn (C) có diện tích nhỏ nhất là
A. ( P ) : x + 2 y + 3 z + 6 = 0
B. ( P ) : x + 2 y + z - 2 = 0
C. ( P ) : x - 2 y + z - 6 = 0
D. ( P ) : 3 x + 2 y + 2 z - 4 = 0
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 - 1 = y - 2 1 = z + 1 2 điểm A(2;-1;1). Gọi I là hình chiếu vuông góc của A lên d. Viết phương trình mặt cầu (C) có tâm I và đi qua A
A. x 2 + ( y - 3 ) 2 + ( z - 1 ) 2 = 20
B. x 2 + ( y + 1 ) 2 + ( z + 2 ) 2 = 5
C. ( x - 2 ) 2 + ( y - 1 ) 2 + ( z + 3 ) 2 = 20
D. ( x - 1 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 14
Trong không gian Oxyz cho điểm M (2;1;1), mặt phẳng α : x + y + z - 4 = 0 và mặt cầu ( s ) : ( x - 3 ) 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 . Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?
A. (4; -3; 3)
B. (4; -3; -3)
C. (4; 3; 3)
D. (-4; -3; -3)
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 2 2 = y - 1 = z 4 và mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 2. Hai mặt phẳng (P) và (Q) chứa d và tiếp xúc với (S). Gọi M,N là tiếp điểm. Tính độ dài đoạn thẳng MN.
A. 2 2
B. 4 3
C. 6
D. 4
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.