Đáp án B.
Phương pháp
Sử dụng công thức tính khoảng cách từ điểm M x 0 ; y 0 ; z 0 đến mặt phẳng P : A x + B y + C z + D = 0 là
d M ; P = A x + B y + C z + D A 2 + B 2 + C 2
Cách giải
d M ; P = − 1 − 2 − 2 + 9 1 + 4 + 4 = 4
Đáp án B.
Phương pháp
Sử dụng công thức tính khoảng cách từ điểm M x 0 ; y 0 ; z 0 đến mặt phẳng P : A x + B y + C z + D = 0 là
d M ; P = A x + B y + C z + D A 2 + B 2 + C 2
Cách giải
d M ; P = − 1 − 2 − 2 + 9 1 + 4 + 4 = 4
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.
Trong không gian Oxyz cho điểm A(1;2;3) và mặt phẳng (P): x + y + z + 3 = 0. Khoảng cách từ A đến mặt phẳng (P) bằng
A. 3 3 .
B. 4 3 .
C. 2 3 .
D. 3 .
Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : x − 1 − 1 = y + 3 2 = z − 3 1 và mặt phẳng P : 2 x + y − 2 z + 9 = 0 . Tọa độ điểm I thuộc d sao cho khoảng cách từ I đến mặt phẳng (P) bằng 2 có dạng I(a;b;c). Giá trị của a + b + c bằng
A. -3 hoặc 9
B. 1 hoặc 2
C. 3 hoặc -9
D. -1 hoặc 2
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A (1;-2;-3); B(1;1;1) và hai đường thẳng ∆ 1 : x - 2 1 = y - 2 4 = z + 6 - 3 ; ∆ 2 : x - 2 1 = y + 3 - 4 = z - 4 3 . Gọi m là số mặt phẳng (P) tiếp xúc với mặt cầu đường kính AB đồng thời song song với cả hai đường thẳng ∆1;∆2; n là số mặt phẳng (Q), sao cho khoảng cách từ A đến (Q) bằng 15, khoảng cách từ B đến (Q) bằng 10. Chọn mệnh đề đúng trong các mệnh đề sau.
A. m + n = 1
B. m + n = 4
C. m + n = 3
D. m + n = 2
Trong không gian Oxyz, cho đường thẳng ∆: (x-1)/1 = (y-1)/2 = z/2và mặt phẳng (P):x + by + cz -3 = 0 Biết mặt phẳng (P) chứa ∆ và cách O một khoảng lớn nhất. Tổng a+b+c bằng
A.1
B. 3
C. -2
D. -1
Trong không gian Oxyz, cho mặt phẳng P : 2 x - 2 y - z + 2 = 0 . Khoảng cách từ điểm M 1 ; - 1 ; - 3 đến (P) bằng
A. 3
B. 1
C. 5 3
D. 5 9
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) = x - y + z - 5 = 0. Tính khoảng cách d từ M(1 ; 2 ; 1) đến mặt phẳng ( P ) được:
A. d = 15 3
B. d = 12 3
C. d = 5 3 3
D. d = 4 3 3
Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng P : 2 x - y - 2 z - 4 = 0 và điểm A - 1 ; 2 ; - 2 . Tính khoảng cách d từ A đến mặt phẳng (P).
A. d = 5 9
B. d = 4 3
C. d = 8 9
D. d = 2 3
Trong không gian Oxyz, cho mặt phẳng ( P ) : m x + ( 2 m + 1 ) y - z - 4 m + 2 = 0 và A(1;2;0). Khi khoảng cách từ A đến mặt phẳng (P) lớn nhất thì hình chiếu vuông góc của A lên (P) là H(a;b;c). Giá trị của a + b + c bằng
A. 5
B. 6
C. 7
D. 8
Trong không gian Oxyz, cho mặt phẳng ( α ) : 2 x + y - 2 z - 2 = 0 , đường thẳng d : x + 1 1 = y + 2 2 = z + 3 2 và điểm A(1/2; 1; 1). Gọi ∆ là đường thẳng nằm trong mặt phẳng ( α ) , song song với d đồng thời cách d một khoảng bằng 3. Đường thẳng ∆ cắt mặt phẳng Oxy tại điểm B. Độ dài đoạn thẳng AB bằng
A. 7 / 3
B. 7 / 2
C. 21 / 2
D. 3 / 2