Trong không gian Oxyz,cho điểm A(1;2;3). Hình chiếu vuông góc của điểm A trên mặt phẳng (Oxy) là điểm
A. N(1;2;0)
B. M(0;0;3)
C. P(1;0;0)
D. Q(0;2;0)
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;3). Gọi A 1 A 2 A 3 lần lượt là hình chiếu vuông góc của A lên các mặt phẳng (Oyz), (Ozx), (Oxy). Phương trình của mặt phẳng ( A 1 A 2 A 3 ) là
A. x 1 + y 2 + z 3 = 0
B. x 3 + y 6 + z 9 = 1
C. x 1 + y 2 + z 3 = 1
D. x 2 + y 4 + z 6 = 1
Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;2;3). Gọi A, B, C lần lượt là hình chiếu của M trên các trục Ox, Oy, Oz. Viết phương trình mặt phẳng (ABC).
Trong không gian với hệ tọa độ Oxyz, cho A(-3;0;0),B(0;0;3),C(0;-3;0). Điểm M(a,b,c) nằm trên mặt phẳng Oxy sao cho M A 2 + M B 2 - M C 2 nhỏ nhất. Tính a 2 + b 2 - c 2
A. 18
B. 0
C. 9
D. – 9
Trong không gian với hệ tọa độ Oxyz, hình chiếu vuông góc của A(3;2;-1) trên mặt phẳng (Oxy) là điểm
A. H(3;2;0)
B. H(0;0;-1)
C. H(3;2;-1)
D. H(0;2;0)
Trong không gian với hệ trục tọa độ Oxyz, cho A (4;1;5),
B (3;0;1), C (-1;2;0). Biết điểm M thuộc mặt phẳng Oxy
sao cho tổng S = M A → . M B → + M B → . M C → + M C → . M A → đạt giá trị
nhỏ nhất. Khi đó hoành độ của điểm M là
Trong không gian Oxyz, cho điểm M ( 1 ; 2 ; 3 ) . Tọa độ điểm M’ đối xứng với M qua mặt phẳng (Oxy) là
Trong không gian Oxyz cho điểm M có tọa độ ( x 0 ; y 0 ; z 0 ). Tìm tọa độ hình chiếu vuông góc của điểm M trên các mặt phẳng tọa độ (Oxy), (Oyz), (Ozx).
Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;-1;4). Gọi H là hình chiếu vuông góc của M lên mặt phẳng (Oxy). Tọa độ điểm H là:
A. H(2;0;4)
B. H(0;-1;4)
C. H(2;-1;0)
D. H(0;-1;0).