Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) , trong đó a > 0 , b > 0 , c > 0 và 3 a + 1 b + 3 c = 5 . Biết mặt phẳng (ABC) tiếp xúc với mặt cầu (S) có phương trình là ( x - 3 ) 2 + ( y - 1 ) 2 + ( z - 3 ) 2 = 304 25 , khi đó thể tích của khối tứ diện OABC nằm trong khoảng nào?
A . ( 0 ; 1 2 ) .
B. (0;1).
C. (1;3).
D. (4;5).
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 + a x + b y + c z + d = 0 có bán kính R = 19 , đường thẳng d : x = 5 + t y = - 2 - 4 t z = - 1 - 4 t và mặt phẳng ( P ) : 3 x - y - 3 z - 1 = 0 . Trong các số {a,b,c,d} theo thứ tự dưới đây, số nào thỏa mãn a + b + c + d = 43, đồng thời tâm I của (S) thuộc đường thẳng d và (S) tiếp xúc với (P)?
A. {-6;-12;-14;75}
B. {6;10;20;7}
C. {-10;4;2;47}
D. {3;5;6;29}
Trong không gian với hệ tọa độ Oxyz, cho A 0 ; 1 ; 2 , B 4 ; − 1 ; 4 và mặt phẳng P : x + 2 y − 3 z + 1 = 0 . Biết mặt cầu (S) đi qua 2 điểm A, B và tiếp xúc với mặt phẳng (P) tại điểm C và C luôn thuộc một đường tròn cố định. Tính bán kính r của đường tròn đó.
A. r = 2 3
B. r = 4 3
C. r = 3 2
D. r = 6
Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2;-2). Gọi (P) là mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (P)?
A. x 2 + y 2 + z 2 = 81
B. x 2 + y 2 + z 2 = 3
C. x 2 + y 2 + z 2 = 9
D. x 2 + y 2 + z 2 = 25
Trong không gian với hệ toạ độ Oxyz, cho điểm H 1 ; 2 ; − 2 . Gọi (P) là mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (P)?
A. x 2 + y 2 + z 2 = 81
B. x 2 + y 2 + z 2 = 3
C. x 2 + y 2 + z 2 = 9
D. x 2 + y 2 + z 2 = 25
Trong không gian Oxyz, cho các điểm A(a;0;0),B(0;b;0),C(0;0;c) di động trên các trục Ox,Oy,Oz sao cho 2a+b-c-6=0 và hai điểm M(2;-3;5),N(-1;0;-1). Xét các mặt cầu (S) ngoại tiếp tứ diện OABC có tâm I. Khi | 2 IM → + IN → | đạt giá trị nhỏ nhất thì mặt cầu (S) có diện tích bằng
A. 14π.
B. 64π.
C. 56π.
D. 16π.
Trong không gian với hệ trục tọa độ O x y z , cho A − 3 ; 1 ; 1 , B 1 ; − 1 ; 5 và mặt phẳng P : 2 x − y + 2 z + 11 = 0. Mặt cầu S đi qua hai điểm A , B và tiếp xúc với mặt phẳng P tại điểm C. Biết C luôn thuộc đường tròn T cố định. Tính bán kính r của đường tròn T
A. r = 3 .
B. r = 4.
C. r = 2 .
D. r = 2.
Trong không gian với hệ toạ độ Oxyz, gọi ( P ) : x a + y b + z c = 1 ( a > 0 , b > 0 , c > 0 ) là mặt phẳng đi qua điểm H(1;1;2) và cắt Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho khối tứ diện OABC có thể tích nhỏ nhất. Tính S = a + 2b + c.
A. 15
B. 5
C. 10
D. 4