Trong không gian Oxyz, cho mặt phẳng ( α ) : x - z - 3 = 0 và điểm M ( 1 ; 1 ; 1 ) . Gọi A là điểm thuộc tia Oz, B là hình chiếu của A lên ( α ) . Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB bằng
A. 6 3
B. 3 123 2
C. 3 3 2
D. 3 3
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;0), B(-3;2;-4) và mặt phẳng P : x + 2 y + z − 3 = 0 . Gọi M(a,b,c) là điểm thuộc mặt phẳng (P) sao cho tam giác MAB cân tại M và có diện tích nhỏ nhất. Tính giá trị T = a 2 + b + c .
A. T = 1.
B. T = 2.
C. T = 0.
D. T = 3.
Trong không gian Oxyz, cho hai điểm A(1;2;−3),B(−2;−2;1) và mặt phẳng α :2x+2y-z+9=0. Xét điểm M thuộc (α) sao cho tam giác AMB vuông tại M và độ dài đoạn thẳng MB đạt giá trị lớn nhất. Phương trình đường thẳng MB là
A. x = - 2 - t y = - 2 + 2 t z = 1 + 2 t
B. x = - 2 + 2 t y = - 2 - t z = 1 + 2 t
C. x = - 2 + t y = - 2 z = 1 + 2 t
D. x = - 2 + t y = - 2 - t z = 1
Trong không gian Oxyz, cho ba điểm A(0;1;2), B(2;-2;1), C(-2;0;1) và mặt phẳng α có phương trình 2 x + 2 y + z - 3 = 0 .Biết rằng tồn tại duy nhất điểm M(a;b;c) thuộc mặt phẳng α sao cho MA = MB = MC. Đẳng thức nào sau đây đúng?
A. 2 a + b - c = 0
B. 2 a + 3 b - 4 c = 41
C. 5 a + b + c = 0
D. a + 3 b + c = 0
Trong không gian với hệ tọa độ Oxyz,cho mặt phẳng P : x + y - z + 2 = 0 và hai điểm A 7 ; - 4 ; - 3 , B 3 ; 4 ; 1 . Gọi M a ; b ; c là điểm thuộc P a < 2 sao cho tam giác AMB vuông tại M và có diện tích nhỏ nhất. Giá trị của biểu thức 3 a + 9 b + 63 c bằng
A. 140
B. -38
C. 154
D. -21
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng ( α ) : bc . x + ac . y + ab . z - abc = 0 với a, b, c là các số khác 0 thỏa mãn 1 a + 2 b + 3 c = 7 . Gọi A, B, C lần lượt là giao điểm của α với các trục tọa độ Ox, Oy, Oz. Biết mặt phẳng α tiếp xúc với mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 72 7 . Thể tích khối OABC với O là gốc tọa độ bằng
A. 2 9
B. 3 4
C. 1 8
D. 4 3
Trong không gian Oxyz, cho mặt phẳng α : 2 x + 3 y - 2 z + 12 = 0 . Gọi A, B, C lần lượt là giao điểm của α với 3 trục tọa độ, đường thẳng d đi qua tâm đường tròn ngoại tiếp tam giác ABC và vuông góc với α có phương trình là
A. x + 3 2 = y + 2 3 = z - 3 - 2
B. x + 3 2 = y - 2 - 3 = z - 3 2
C. x + 3 2 = y - 2 3 = z - 3 - 2
D. x - 3 2 = y - 2 3 = z + 3 - 2
Cho tam giác ABC với A 2 ; - 3 ; 2 , B 1 ; - 2 ; 2 , C 1 ; - 3 ; 3 . Gọi A ' , B ' , C ' lần lượt là hình chiếu vuông góc của A, B, C lên mặt phẳng α : 2 x - y + 2 z - 3 = 0 . Khi đó, diện tích tam giác A’B’C’ bằng
A. 1
B. 3 2
C. 1 2
D. 3 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 5 2 = y + 7 2 = z - 12 - 1 và mặt phẳng α : x + 2 y - 3 z - 3 = 0 . Gọi M là giao điểm của d với α , A thuộc d sao cho A M = 14 . Tính khoảng cách từ A đến mặt phẳng α
A. 2
B. 3.
C. 6
D. 14