Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 2 ) 2 = 9 và mặt phẳng (P): 2x - 2y + z + 3 = 0. Gọi M(a;b;c) là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó:
A. a + b + c = 8.
B. a + b + c = 5.
C. a + b + c = 6.
D. a + b + c = 7.
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-1;-1),B(4;-5;-5) và mặt phẳng (P):x+y+z-3=0. Mặt cầu (S) thay đổi qua hai điểm A,B và cắt mặt phẳng (P) theo giao tuyến là đường tròn (C) có tâm H và bán kính bằng 3. Biết rằng H luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó.
A. 21 .
B. 2 6 .
C. 6.
D. 3 3 .
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 4 ) 2 = 10 và mặt phẳng ( P ) : - 2 x + y + 5 z + 9 = 0 . Gọi mặt phẳng (Q) là tiếp diện của (S) tại .
Góc giữa mặt phẳng (P) và (Q).
A. 30°.
B. 45°.
C. 60°.
D. 90°.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 2 ) 2 + ( y + 1 ) 2 + ( z - 4 ) 2 = 10 và mặt phẳng ( P ) : - 2 x + y + 5 z + 9 = 0 . Gọi (Q) là tiếp diện của (S) tại M(5;0;4). Tính góc giữa (P),(Q)
A. 60 °
B. 120 °
C. 30 °
D. 45 °
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : 2 x − 2 y − z − 9 = 0 và mặt cầu ( S ) : ( x − 3 ) 2 + ( y + 2 ) 2 + ( z − 1 ) 2 = 100 . Biết (P) cắt (S) theo giao tuyến là một đường tròn. Tìm tọa độ tâm của đường tròn giao tuyến.
A. (3;2;-1)
B. (-3;2;-1)
C. (3;-2;1)
D. (-3;2;1)
Trong không gian tọa độ Oxyz, cho mặt cầu (S) có phương trình (x-2)2 + (y+1)2 + (z-3)2 = 20. Mặt phẳng có phương trình x-2y+2z-1=0 và đường thẳng ∆ có phương trình x 1 = y + 2 2 = z + 4 - 30 . Viết phương trình đường thẳng ∆ ' nằm trong mặt phẳng α vuông góc với ∆ đồng thời cắt (S) theo một dây cung có độ dài lớn nhất.
Trong không gian Oxyz cho mặt cầu S : x − 1 2 + y − 2 2 + z − 3 2 = 9 và mặt phẳng P : 2 x − 2 y + z + 3 = 0. Gọi M a ; b ; c là điểm trên mặt cầu (S) sao cho khoảng cách từ M đến mặt phẳng (P) là lớn nhất. Khi đó
A. a + b + c = 6 .
B. a + b + c = 5 .
C. a + b + c = 8 .
D. a + b + c = 7 .
Trong không gian Oxyz, cho mặt phẳng ( P ) : m x + ( 2 m + 1 ) y - z - 4 m + 2 = 0 và A(1;2;0). Khi khoảng cách từ A đến mặt phẳng (P) lớn nhất thì hình chiếu vuông góc của A lên (P) là H(a;b;c). Giá trị của a + b + c bằng
A. 5
B. 6
C. 7
D. 8
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S : x − 1 2 + y − 2 2 + z − 3 2 = 9 tâm I và mặt phẳng P : 2 x + 2 y − z + 24 = 0 . Gọi H là hình chiếu vuông góc của I lên (P). Điểm M thuộc (S) sao cho đoạn MH có độ dài lớn nhất. Tính tọa độ điểm M.
A. M(-1;0;4)
B. M(0;1;2)
C. M(3;4;2)
D. M(4;1;2)