(S) có tâm I ( 0;-2;1 ) và bán kính R = 3
Ta có d ( I; (a) ) = - 2 + 2 - 6 = 4 6 3 > R = 3
Vậy (a) không cắt mặt cầu (S).
Đáp án D
(S) có tâm I ( 0;-2;1 ) và bán kính R = 3
Ta có d ( I; (a) ) = - 2 + 2 - 6 = 4 6 3 > R = 3
Vậy (a) không cắt mặt cầu (S).
Đáp án D
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : 2x - 2y + z + 3 = 0 và mặt cầu S : x - 1 2 + ( y + 3 ) 2 + z 2 = 9 và đường thẳng d : x - 2 = y + 2 1 = z + 1 2 . Cho các phát biểu sau đây:
I. Đường thẳng d cắt mặt cầu (S) tại 2 điểm phân biệt.
II. Mặt phẳng (P) tiếp xúc với mặt cầu (S)
III. Mặt phẳng (P) và mặt cầu (S) không có điểm chung
IV. Đường thẳng d cắt mặt phẳng (PA) tại 1 điểm
Số phát biểu đúng là:
A. 4
B. 1
C. 2
D. 3
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x - 1 1 = y + 2 1 = z 1 và mặt phẳng P : 2 x + y - 2 z + 2 = 0 . Gọi (S) là mặt cầu có tâm nằm trên d, tiếp xúc với mặt phẳng (P) và đi qua điểm A(2;-1;0). Biết tâm của mặt cầu có cao độ không nhỏ hơn 1, phương trình mặt cầu (S) là
A. x - 2 2 + y - 1 2 + z - 1 2 = 1
B. x + 2 2 + y + 1 2 + z - 1 2 = 1
C. x - 2 2 + y - 1 2 + z + 1 2 = 1
D. x - 2 2 + y + 1 2 + z - 1 2 = 1
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x 2 = y - 3 1 = z - 2 1 và hai mặt phẳng
P x - 2 y + 2 z = 0 ; Q : x - 2 y + 3 z - 5 = 0 . Mặt cầu (S) có tâm I là giao điểm của đường thẳng d và mặt phẳng (P). Mặt phẳng (Q) tiếp xúc với mặt cầu (S). Viết phương trình của mặt cầu (S).
A. S : x + 2 2 + y + 4 2 + z + 3 2 = 1
B. S : x - 2 2 + y - 4 2 + z - 3 2 = 6
C. S : x - 2 2 + y - 4 2 + z - 3 2 = 2 7
D. S : x - 2 2 + y + 4 2 + z + 4 2 = 8
Trong không gian Oxyz cho điểm M (2;1;1), mặt phẳng α : x + y + z - 4 = 0 và mặt cầu ( s ) : ( x - 3 ) 2 + ( y - 3 ) 2 + ( z - 4 ) 2 = 16 . Phương trình đường thẳng α đi qua M và nằm trong α cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất. Đường thẳng α đi qua điểm nào trong các điểm sau đây?
A. (4; -3; 3)
B. (4; -3; -3)
C. (4; 3; 3)
D. (-4; -3; -3)
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-1;-1),B(4;-5;-5) và mặt phẳng (P):x+y+z-3=0. Mặt cầu (S) thay đổi qua hai điểm A,B và cắt mặt phẳng (P) theo giao tuyến là đường tròn (C) có tâm H và bán kính bằng 3. Biết rằng H luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó.
A. 21 .
B. 2 6 .
C. 6.
D. 3 3 .
Trong không gian Oxyz cho các mặt phẳng (P): x-y+2z+1 = 0,(Q):2x+y+z-1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ đúng một mặt cầu (S) thỏa yêu cầu.
A. r = 3
B. r = 2
C. r = 3 2
D. r = 3 2 2
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;-1) và mặt phẳng (P) có phương trình x + y + 2 z - 13 = 0 . Mặt cầu (S) đi qua A, tiếp xúc với mặt phẳng (P) và có bán kính nhỏ nhất. Điểm I (a;b;c) là tâm của mặt cầu (S), tính giá trị của biểu thức T = a 2 + 2 b 2 + 3 c 2
A. T = 25
B. T = 30
C. T = 20
D. T = 35
Trong không gian Oxyz cho hai mặt phẳng P : x - y + 2 z + 1 = 0 và Q : 2 x + y + z - 1 = 0 . Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2, (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu (S) thỏa mãn yêu cầu.
A. r = 3
B. r = 3 2
C. r = 2
D. r = 3 2 2