Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 3 ) 2 = 25
Tìm tọa độ tâm I và bán kính R của mặt cầu (S)
A. I(1; -2; -3); R = 25
B. I(-1; 2; 3); R = 5
C. I(-1; 2; 3); R = 25
D. I(1; -2; -3); R = 5
Trong không gian hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 4 . Tìm tọa độ tâm I và bán kính R của mặt cầu đó
A. I(-1;2;3), R=2
B. I(-1;2;-3), R=4
C. I(1;-2;3); R=2
D. I(1;-2;3), R=4
#2H3Y1-3~Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+(y+2)²+z²=25. Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
A. I(1;-2;0), R=5
B. I(-1;2;0), R=25
C. I(1;-2;0), R=25
D. I(-1;2;0), R=5.
#2H3Y1-3~Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): (x+1)²+(y-2)²+(z-1)²=9. Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S).
A. I(-1;2;1) và R=3
B. I(-1;2;1) và R=9
C. I(1;-2;-1) và R=3
D. I(1;-2;-1) và R=9.
#2H3Y1-3~Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình (x+1)²+(y-3)²+z²=16. Tìm tọa độ tâm I và bán kính R của mặt cầu đó.
A. I(-1;3;0), R=4
B. I(1;-3;0), R=4
C. I(-1;3;0), R=16
D. I(1;-3;0), R=16.
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 9 . Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
A. I(-1;2;1), R=9
B. I(1;-2;-1), R=9
C. I(1;-2;-1), R=3
D. I(-1;2;1), R=3
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có tâm I(-1;2;0) và bán kính R=3. Phương trình mặt cầu (S) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình x²+y²+z²+2x-4y+6z-2=0. Tìm tọa độ tâm I và tính bán kính R của (S).
A. Tâm I(-1;2;-3) và bán kính R=4
B. Tâm I(1;-2;3) và bán kính R=4
C. Tâm I(-1;2;3) và bán kính R=4
D. Tâm I(1;-2;3) và bán kính R=16.
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;0;-3), B(-3;-2;-5). Biết rằng tập hợp các điểm M trong không gian thỏa mãn đẳng thức AM2 + BM2 = 30 là một mặt cầu (S). Tọa độ tâm I và bán kính R của mặt cầu (S) là:
A . I - 2 ; - 2 ; - 8 ; R = 3
B . I ( - 1 ; - 1 ; - 4 ) ; R = 6
C . I ( - 1 ; - 1 ; - 4 ) ; R = 3
D . I ( - 1 ; - 1 ; - 4 ) ; R = 30 2