Chọn A.
Phương pháp:
Cách giải: Tâm mặt cầu là I(-1;1;0) bán kính mặt cầu là R = 2.
Chọn A.
Phương pháp:
Cách giải: Tâm mặt cầu là I(-1;1;0) bán kính mặt cầu là R = 2.
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-1;-1),B(4;-5;-5) và mặt phẳng (P):x+y+z-3=0. Mặt cầu (S) thay đổi qua hai điểm A,B và cắt mặt phẳng (P) theo giao tuyến là đường tròn (C) có tâm H và bán kính bằng 3. Biết rằng H luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó.
A. 21 .
B. 2 6 .
C. 6.
D. 3 3 .
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A B (3; 2;6), (0;1;0) - và mặt cầu (S): . Mặt phẳng (P): ax + by + cz – 2 = 0 đi qua A, B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính T = a + b + c
A. T = 5
B. T = 3
C. T = 2
D. T = 4
Trong không gian Oxyz cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 27 . Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0;-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng ( α ) có phương trình dạng ax+by-z+c= 0, khi đó a-b+c bằng:
A. -4.
B. 8
C. 0
D. 2
Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;1;2), mặt phẳng (α):x+y+z-4=0 và mặt cầu S : x - 3 2 + y - 1 2 + z - 2 2 = 16 . Gọi (P) là mặt phẳng đi qua A, vuông góc với (α) và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục x’Ox là
A. M(-1/2;0;0).
B. M(-1/3;0;0).
C. M(1;0;0).
D. M(1/3;0;0).
Trong không gian với hệ tọa độ Oxyz cho điểm A(0;1;2) mặt phẳng α : x - y + z - 4 = 0 và S : x - 3 2 + y - 1 2 + z - 2 2 = 16 . Gọi (P) là mặt phẳng đi qua A vuông góc với α và đồng thời (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của (P) và trục xOx' là
A. M - 1 3 ; 0 ; 0
B. M 1 ; 0 ; 0
C. M - 1 2 ; 0 ; 0
D. M 1 3 ; 0 ; 0
Trong không gian (Oxyz), cho mặt cầu ( S ) : ( x - 1 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 4 và điểm A(1;1;-1). Ba mặt phẳng thay đổi đi qua A và đôi một vuông góc với nhau, cắt mặt cầu (S) theo ba giao tuyến là các đường tròn ( C 1 ) , ( C 2 ) , ( C 3 ) . Tổng bán kính của ba đường tròn ( C 1 ) , ( C 2 ) , ( C 3 ) là
A. 2 + 2 3
B. 3 3
C. 4 + 3
D. 6
Trong không gian với hệ tọa độ O x y z , cho điểm A 0 ; 1 ; 2 , mặt phẳng α : x − y + z − 4 = 0 và mặt cầu S : x − 3 2 + y − 1 2 + z − 2 2 = 16 . Gọi P là mặt phẳng đi qua A , vuông góc với α và đồng thời P cắt mặt cầu S theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm M của P và trục x ' O x là
A. M − 1 2 ; 0 ; 0 .
B. M − 1 3 ; 0 ; 0 .
C. M 1 ; 0 ; 0 .
D. M 1 3 ; 0 ; 0 .
Trong không gian Oxyz, cho mặt cầu (S): x - 1 2 + y - 2 2 + z - 3 2 = 25 và hai điểm A 3 ; - 2 ; 6 ) và B 0 ; 1 ; 0 . Mặt phẳng P ; a x + b y + c z - 2 = 0 chứa đường thẳng AB và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính giá trị của biểu thức M = 2a + b – c.
A. M = 2
B. M = 3
C. M = 1
D. M = 4
Trong không gian Oxyz, cho mặt cầu S : x - 2 2 + y - 5 2 + z - 3 2 = 27 và đường thẳng d : x - 1 2 = y 1 = z - 2 2 . Mặt phẳng (P) chứa đường thẳng d và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Nếu phương trình của (P) là a x + b y - z + c = 0 thì
A. a + b + c = 1
B. a + b + c = - 6
C. a + b + c = 6
D. a + b + c = 2