Trong không gian Oxyz, cho hai điểm A(10;6;-2), B(-5;10;-9) và mặt phẳng ( α ) : 2 x + 2 y + - 12 = 0 . Điểm M di động trên mặt phẳng ( α ) sao cho MA, MB luôn tạo với ( α ) các góc bằng nhau. Biết rằng M luôn thuộc một đường tròn ( ω ) cố định. Hoành độ của tâm đường tròn ( ω ) bằng
A. 9/2
B. 2
C. -4
D. 10
Trong không gian Oxyz, cho hai điểm A(10;6;-2), B(5;10;-9) và mặt phẳng (a): 2x + 2y +z – 12=0. Điểm M di động trên mặt phẳng (a) sao cho MA,MB luôn tạo với (a) các góc bẳng nhau. Biết rằng M luôn thuộc một đường tròn (ω) cố định. Hoành độ của tâm đường tròn (ω) bằng.
A. 9/2
B. 2
C. 10
D. -4
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 10 ; 6 ; − 2 , B 5 ; 10 ; − 9 và mặt phẳng có phương trình α : 2 x + 2 y + z − 12 = 0. Điểm M di động trên mặt phẳng α sao cho MA, MB tạo với α các góc bằng nhau. Biết rằng M thuộc đường tròn ω cố định. Hoành độ của tâm đường tròn ω là:
A. 9 2 .
B. 2
C. 10
D. 4
Trong không gian Oxyz cho mặt phẳng (P): 2x + 2y - z + 4 = 0 và các điểm A(2;1;2); B(3;-2;2). Điểm M thuộc mặt phẳng (P) sao cho các đường thẳng MA; MB luôn tạo với mặt phẳng (P) các góc bằng nhau. Biết rằng điểm M thuộc đường tròn (C) cố định. Tìm tọa độ tâm của đường tròn (C).
A. 10 3 ; - 3 ; 14 3
B. 17 21 ; - 71 21 ; 17 21
C. 74 27 ; - 97 27 ; 62 27
D. 32 9 ; - 49 9 ; 2 9
Trong không gian Oxyz, cho mặt phẳng P : 2 x + 2 y − z + 4 = 0 và các điểm A 2 ; 1 ; 2 , B 3 ; − 2 ; 2 . Điểm M thuộc mặt phẳng (P) sao cho các đường thẳng MA, MB luôn tạo với mặt phẳng (P) một góc bằng nhau. Biết rằng điểm M luôn thuộc đường tròn (C) cố định. Tìm tọa độ tâm của đường tròn (C).
A. 74 27 ; − 97 27 ; 62 27
B. 32 9 ; − 49 9 ; 2 9
C. 10 3 ; − 3 ; 14 3
D. 17 21 ; − 17 21 ; 17 21
Trong không gian Oxyz, cho hai điểm A(1;2;-3),B(-2;-2;1) và mặt phẳng (P):2x+2y-z+9=0. Điểm M di động trên (P) sao cho M luôn nhìn đoạn AB dưới góc 90°. Biết rằng M luôn thuộc một đường tròn có định, tính bán kính R của đường tròn đó
A. R= 2 2
B. R= 5 2
C. R= 3 2
D. R= 6 2
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-1;-1),B(4;-5;-5) và mặt phẳng (P):x+y+z-3=0. Mặt cầu (S) thay đổi qua hai điểm A,B và cắt mặt phẳng (P) theo giao tuyến là đường tròn (C) có tâm H và bán kính bằng 3. Biết rằng H luôn thuộc một đường tròn cố định. Tìm bán kính của đường tròn đó.
A. 21 .
B. 2 6 .
C. 6.
D. 3 3 .
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(10;6;-2),B(5;10;-9) và mặt phẳng (P):2x+2y+z-12=0. Gọi M(a;b;c) là điểm di động trên mặt phẳng (P) sao cho MA, MB tạo với m.t ph.ng (P) các góc α , β thỏa mãn α + β = 90 ° . Khi biểu thức T=4MA+MB đạt giá trị nhỏ nhất. Giá trị của biểu thức a+b+c bằng
A. 15.
B. 3.
C. 5.
D. 13.
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A 1 ; 2 ; 3 , B 3 ; 4 ; 5 và mặt phẳng ( α ) : x + 2 y + 3 z - 14 = 0 Gọi Δ là đường thẳng thay đổi nằm trong mặt phẳng (α), các điểm M,N lần lượt là hình chiếu vuông góc của A,B trên Δ. Biết rằng khi AM = BN thì trung điểm của MN luôn thuộc một đường thẳng cố định. Viết phương trình đường thẳng cố định đó.
A. x = 4 + t y = 5 - 2 t z = 1 + t
B. x = 5 + t y = 3 - 2 t z = 1 + t
C. x = 2 + t y = 1 - 2 t z = 3 + t
D. x = 4 + t y = 5 + 2 t z = t