Chọn A
Phương trình tham số của
Ta có M = d ∩ (P) nên 2 (2+3t)-3 (-1+t)-5-t-6=0 ó t = 2 => M (8 ; 1 ; -7)
VTCP của Δ là
Δ đi qua M có VTCP nên có phương trình:
Chọn A
Phương trình tham số của
Ta có M = d ∩ (P) nên 2 (2+3t)-3 (-1+t)-5-t-6=0 ó t = 2 => M (8 ; 1 ; -7)
VTCP của Δ là
Δ đi qua M có VTCP nên có phương trình:
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 1 2 = z - 3 - 2 và mặt phẳng (P): 2x - 2y + z - 3 = 0, phương trình đường thẳng ∆ nằm trong mặt phẳng (P), cắt d và vuông góc với d là
A. x = 2 - 2 t y = 1 - 5 t z = - 5 - 6 t
B. x = - 2 - 2 t y = - 1 - 5 t z = 5 - 6 t
C. x = - 2 - 2 t y = - 1 + 5 t z = 5 - 8 t
D. x = - 2 - 2 t y = 1 - 5 t z = 5 + 6 t
Trong không gian Oxyz cho đường thẳng
d: x - 1 2 = y - 2 - 1 = z - 3 1 và mặt phẳng
(P): 2x +y +z+ 1 = 0. Phương trình đường
thẳng qua giao điểm của đường thẳng (d)
với (P), nằm trên mặt phẳng (P) và vuông
góc với đường thẳng d là.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + y - z - 2 = 0 và đường thẳng d : x + 1 2 = y - 1 1 = z - 2 1 Phương trình nào dưới đây là phương trình mặt phẳng chứa đường thẳng (d) và vuông góc với mặt phẳng α
A. x+y-z+2=0
B. 2x-3y-z+7=0
C. x+y+2z-4=0
D. 2x-3y-z-7=0
Trong không gian Oxyz, cho mặt phẳng ( α ) : 3 x + y + z = 0 và đường thẳng △ : x - 3 1 = y + 4 - 2 = z - 1 2 . Phương trình của đường thẳng d nằm trong mặt phẳng ( α ) , cắt và vuông góc với đường thẳng △ là
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 1 = z - 2 1 và mặt phẳng (P): 2x-y-2z+1=0. Đường thẳng nằm trong (P), cắt và vuông góc với d có phương trình là:
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng: ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng ( P ) : x + 2 y + 2 z - 4 = 0 . Phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ là
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng ( α ) : x + y + z - 2 = 0 Đường thẳng nằm trong mặt phẳng ( α ) , đồng thời vuông góc và cắt đườn thẳng d có phương trình là
Trong không gian với hệ tọa độ Oxyz cho đường thẳng ∆ : x 1 = y - 1 1 = z - 2 - 1 và mặt phẳng (P): x+2y+2z-4=0. Phương trình đường thẳng d nằm trong (P) sao cho d cắt và vuông góc với đường thẳng ∆ là
Trong không gian Oxyz, cho mặt phẳng (P) có phương trình x + 2 y + z - 4 = 0 và đường thẳng d : x + 1 2 = y 1 = z + 3 2 . Viết phương trình chính tắc của đường thẳng∆nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d.