Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;1;1) và mặt phẳng (P) đi qua M và cắt chiều dương của các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C thỏa mãn OA=2OB. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.
A. 64 27
B. 10 3
C. 9 2
D. 81 16
Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;1;1). Viết phương trình mặt phẳng (P) đi qua M và cắt ba tia Ox, Oy, Oz lần lượt tại các điểm A, B, C khác gốc O sao cho thể tích khối tứ diện OABC nhỏ nhất.
A. 2x-y+2z-3=0
B. 4x-y-z-6=0
C. 2x+y+2z-6=0
D. x+2y+2z-6=0
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;1). Mặt phẳng (P) thay đổi đi qua M lần lượt cắt các tia Ox,Oy,Oz tại A,B,C khác O. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.
A. 54.
B. 6.
C. 9.
D. 18.
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;1). Mặt phẳng (P) thay đổi đi qua M cắt các tia Ox, Oy, Oz lần lượt tại A, B, C khác gốc tọa độ. Tính giá trị nhỏ nhất của thể tích khối tứ diện OABC.
A. 18
B. 9
C. 6
D. 54
Trong không gian với hệ tọa độ Oxyz, cho điểm H 1 ; 2 ; − 2 . Mặt phẳng α đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của Δ A B C . Tính diện tích mặt cầu ngoại tiếp tứ diện OABC.
A. 81 π 2
B. 243 π 2
C. 81 π
D. 243 π
Trong không gian Oxyz, mặt phẳng (α) đi qua điểm M(1;2;1) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho độ dài các đoạn thẳng OA, OB, OC theo thứ tự tạo thành cấp số nhân có công bội bằng 2. Tính khoảng cách từ gốc tọa độ O tới mặt phẳng (α).
A. 4 21
B. 21 21
C. 3 21 7
D. 9 21
Trong không gian Oxyz, cho điểm M(2;1;1). Viết phương trình mặt phẳng (P) đi qua M và cắt ba tia Ox, Oy, Oz lần lượt tại các điểm A, B, C khác gốc O sao cho thể tích khối tứ diện OABC nhỏ nhất
A. 4x-y-z-6=0
B. 2x+y+2z-6=0
C. 2x-y+2z-3=0
D. x+2y+2z-6=0
Trong không gian với hệ toạ độ Oxyz, gọi ( P ) : x a + y b + z c = 1 ( a > 0 , b > 0 , c > 0 ) là mặt phẳng đi qua điểm H(1;1;2) và cắt Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho khối tứ diện OABC có thể tích nhỏ nhất. Tính S = a + 2b + c.
A. 15
B. 5
C. 10
D. 4
Trong không gian với hệ tọa độ Oxyz, mặt phẳng (α) đi qua M(2;1;2) đồng thời cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho tứ diện OABC có thể tích nhỏ nhất. Phương trình mặt phẳng (α) là.
A. x+2y+z-1=0
B. 2x+y-2z-1=0
C. 2x+y+z-7=0
D. x+2y+z-6=0