Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0; 0; 2), B(3; 0; 5), C(1; 1; 0). Tọa độ của điểm D sao cho ABCD là hình bình hành là
A. D(4; 1; 3)
B. D(-4; -1; -3)
C. D(2; 1; -3)
D. D(-2; 1; -3)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-4; 3; 2), B(0; -1; 4). Viết phương trình mặt phẳng trung trực của AB
A. 2x - y + z + 3 = 0
B. 2x - 2y + z + 3 = 0
C. x - 2y + z + 3 = 0
D. 2x - 2y - z + 3 = 0
Trong không gian Oxyz, cho hình bình hành ABCD với A(1; 2; 3), B(5; 0; -1), C(4; 3; 6) và D(a;b;c) Giá trị của a+b+c bằng
A. 3
B. 11
C. 15
D. 5
Trong không gian với hệ tọa độ Oxyz, cho điểm M(a;b;c), (a > 0) thuộc đường thẳng d : x − 3 = y + 2 − 1 = z − 1 2 . Hình chiếu song song của điểm M trên mặt phẳng P : x + 5 y − 2 = 0 theo phương của đường thẳng Δ: x = 3 − t y = 1 + 2 t z = − 3 t là điểm M’ sao cho MM ' = 14 . Tính giá trị của biểu thức T = a + b + c là:
A. 0
B. 1
C. 2
D. 3
Trong không gian với hệ trục tọa độ Oxyz cho điểm A(2;0;-1) , mặt phẳng (P): 2x+y-z-2=0 và mặt phẳng (Q): x-3y-4=0. Gọi M là một điểm nằm trên (P) và N là điểm nằm trên (Q) sao cho A là trung điểm của MN. Khi M chạy trên mặt phẳng (P) thì quỹ tích điểm N là đường thẳng d có phương trình tương ứng là
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(0;-2;-l), B(-2;-4;3), C(l;3;-l) và mặt phẳng P : x + y - 2 z - 3 = 0 . Tìm điểm M ∈ P sao cho M A → + M B → + 2 M C → đạt giá trị nhỏ nhất.
A. M 1 2 ; 1 2 ; - 1
B. M - 1 2 ; - 1 2 ; 1
C. M(2;2;-4)
D. (-2;-2;4)
Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(-1;2;-3); B(2; -1; 0). Tọa độ của vectơ A B → là
A. A B → = 1 ; - 1 ; 1
B. A B → = 1 ; 1 ; - 3
C. A B → = 3 ; - 3 ; 3
D. A B → = 3 ; - 3 ; - 3
Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A 1 ; 2 ; − 1 , B − 3 ; 4 ; 3 , C 3 ; 1 ; − 3 . Số điểm D sao cho 4 điểm A, B, C, D là 4 đỉnh của một hình bình hành là
A. 3
B. 1
C. 2
D. 0
Trong không gian Oxyz cho điểm A(0 ;4 ;2) và đường thẳng d : x - 2 1 = v + 1 2 = z 3 . Tọa độ hình chiếu của điểm A trên đường thẳng d là :
A. (3 ;1 ;3)
B. (1 ;-3 ;3)
C. (2 ;-1 ;0)
D. (0 ;-5 ;-6)