Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Trong khai triển 1 + 2 x n = a 0 + a 1 x + ... + a n x n ,    n ∈ ℕ * . Tìm số lớn nhất trong các hệ số a 0 , a 1 ,..., a n , biết  a 0 + a 1 2 + ... + a n 2 n = 4096

A. 126720

B. 213013

C. 130272

D. 130127

Cao Minh Tâm
19 tháng 10 2017 lúc 5:30

Đáp án A

Theo đề ta có  1 + 2 x n = a 0 + a 1 x + .... + a n x n   .

Thay x = 1 2  ta có  1 + 1 n = a 0 + a 1 2 + a 2 2 2 + ... + a n 2 n = 4096 .

⇔ 2 n = 4096 ⇔ n = 12

Hệ số của số hạng tổng quát trong khai triển nhị thức 1 + 2 x 12  là  a n = C 12 n .2 n ; a n − 1 = C 12 n − 1 .2 n − 1

Xét bất phương trình với ẩn số n ta có  C 12 n − 1 .2 n − 1 ≤ C 12 n .2 n   .

⇔ 12 ! n − 1 ! . 13 − n ! ≤ 12 ! .2 n ! . 12 − n ! ⇔ 1 13 − n ≤ 2 n ⇔ n ≤ 26 3

Do đó bất đẳng thức đúng với n ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8  và dấu đẳng thức không xảy ra.

Ta được a 0 < a 1 < a 2 < ... < a 8  và a 8 > a 9 > a 10 > a 11 > a 12 .

Vậy giá trị lớn nhất của hệ số trong khai triển nhị thức là  C 12 8 .2 8 = 126720   .


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết