Đáp án A
Theo đề ta có 1 + 2 x n = a 0 + a 1 x + .... + a n x n .
Thay x = 1 2 ta có 1 + 1 n = a 0 + a 1 2 + a 2 2 2 + ... + a n 2 n = 4096 .
⇔ 2 n = 4096 ⇔ n = 12
Hệ số của số hạng tổng quát trong khai triển nhị thức 1 + 2 x 12 là a n = C 12 n .2 n ; a n − 1 = C 12 n − 1 .2 n − 1
Xét bất phương trình với ẩn số n ta có C 12 n − 1 .2 n − 1 ≤ C 12 n .2 n .
⇔ 12 ! n − 1 ! . 13 − n ! ≤ 12 ! .2 n ! . 12 − n ! ⇔ 1 13 − n ≤ 2 n ⇔ n ≤ 26 3
Do đó bất đẳng thức đúng với n ∈ 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 và dấu đẳng thức không xảy ra.
Ta được a 0 < a 1 < a 2 < ... < a 8 và a 8 > a 9 > a 10 > a 11 > a 12 .
Vậy giá trị lớn nhất của hệ số trong khai triển nhị thức là C 12 8 .2 8 = 126720 .