Vì ABCD là hình bình hành nên ˆA=ˆCA^=C^ và ˆB=ˆDB^=D^ (tính chất)
Áp dụng định lý tổng các góc trong một tứ giác ta có:
Vì ABCD là hình bình hành nên ˆA=ˆCA^=C^ và ˆB=ˆDB^=D^ (tính chất)
Áp dụng định lý tổng các góc trong một tứ giác ta có:
Trong hình bình hành ABCD có số đo góc A gấp 2 lần góc B . Số đo các góc của hình bình hành là :
Cho hình thang ABCD vuông tại A có cạnh bên AD bắng đáy nhỏ AB và bắng nữa đáy lớn DC. Gọi H là hình chiếu của D trên AC. Lấy M và N lần lượt là trung điểm của HC và HD.
a)c/m tứ giác DNMC là hình thang
b)c/m tứ giác ANMB là hình bình hành
c) tính số đo góc BMD.
1. Cho hình bình hành ABCD có AB= 2AD. Gọi M, N theo tứ tự là trung điểm của các cạnh AB, CD. Gọi P và Q lần lượt là giao điểm của BN với CM và của AN với DM
a. Tứ giác AMND là hình gì? Vì sao?
b. Chứng minh: tứ giác MPNQ là hình chữ nhật
c. Tìm điều kiện của tứ giác ABCD để MPNQ là hình vuông
d. Chứng minh: bốn đường thẳng AC, BD, MN, QP đồng qui
2. Cho hình bình hành ABCD. Kẻ AN, CM vuông góc với BD, N và M thuộc BD
a. Chứng minh DN = BM
b. Chứng minh Tứ giác ANCM là hình bình hành
c. Gọi K là điểm đối xứng với A qua N. Tứ giác DKCB là hình gì? Vì sao?
d. Tia AM cắt tia KC tại P. Chứng minh các đường thẳng AC, PN, KM đồng qui
Cho hình bình hành ABCD . QUA C kẻ đường thẳng xy chỉ có một điểm chung C với hình bình hành . Gọi AA' , BB' , DD' là các đường vuông góc từ A , B, C tới đường thẳng xy . Chứng minh rằng AA' = BB' + DD'
Cho hình bình hành ABCD. Qua C kẻ đường thẳng Xy chỉ có 1 điểm chung C với hình bình hành. Gọi AA' , BB' , DD' là các đường vuông góc kẻ từ A , B , D đến đường thẳng Xy.
Chứng minh rằng: AA' = BB' + DD'
Cho hình bình hành ABCD. Vẽ ở ngoài hình bình hành các hình vuông có cạnh theo thứ tự là AB,BC,CD,DA có tâm đối xứng là E,F,G,H.Chứng minh rằng:
a/Tam giác HAE= tam giác FBE
b/EFGH là hình vuông
Cho hình bình hành ABCD. Kẻ DF vuông góc BC ; DE vuông góc AB. Gọi O là giao điểm các đường chéo của hình bình hành
a/ cm góc EDA = góc CDF
b/ cm tam giác EFO cân tại O
c/ tính góc EOF, biết góc ADC = 77độ
GIÚP MÌNH VỚI CÁC BẠN
Bài 1: Tam giác ABC có AM, BN là các trung tuyến, G là trọng tâm. Gọi E và F lần
lượt là trung điểm của GB và GA. Gọi I là điểm đối xứng với G qua M.
a) Chứng minh BICG và MNFE là hình bình hành.
b) Để MNFE là hình chữ nhật thì cần có thêm điều kiện gì cho tam giác ABC ?
c) Khi BICG là hình thoi, hãy chứng minh tam giác ABC cân tại A.
Bài 2: Cho hình bình hành ABCD. Gọi E là điểm đối xứng của A qua trung điểm M
của BC.
a) Chứng minh ABEC là hình bình hành và D, E, C thẳng hàng.
b) Tam giác ABC phải có điều kiện gì thì ABEC trở thành hình thoi.
Cho hình bình hành ABCD co BC=2AB mà A=60 độ
Gọi Evà F là trung điểm của BC và AD
a)Tứ giác ECDF;ABED là hình gì? vì sao?
b)Tính số đo góc A;E;D?