Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn (C) có phương trình x - 2 2 + y + 2 2 = 4 và đường thẳng d : 3 x + 4 y + 7 = 0 . Gọi A B, là các giao điểm của đường thẳng d với đường tròn (C) . Tính độ dài dây cung AB.
A. AB = 3 .
B. AB = 2 5 .
C. AB = 2 3 .
D. AB = 4 .
Trong mặt phẳng tọa độ Oxy, tính bán kính đường tròn tâm I(1;-2) và tiếp xúc với đường thẳng d: 3x-4y-26=0
A. R = 3
B. R = 5
C. R = 9.
D. R = 3 5
Trong mặt phẳng tọa độ Oxy, cho đường tròn (S) có tâm I nằm trên đường thẳng y = - x , bán kính bằng R = 3 và tiếp xúc với các trục tọa độ. Lập phương trình của (S), biết hoành độ tâm I là số dương.
A. x - 3 2 + y - 3 2 = 9
B. x - 3 2 + y + 3 2 = 9
C. x - 3 2 - y - 3 2 = 9
D. x + 3 2 + y + 3 2 = 9
Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;1;3) và đường thẳng d có phương trình x - 1 2 = y - 2 - 1 = z z . Mặt phẳng chứa A và d. Viết phương trình mặt cầu tâm O tiếp xúc với mặt phẳng (P).
A. x 2 + y 2 + z 2 = 12 5 .
B. x 2 + y 2 + z 2 = 3 .
C. x 2 + y 2 + z 2 = 6 .
D. x 2 + y 2 + z 2 = 24 5 .
Cho đường thẳng d: 2x - y + 10 =0 và điểm M(1; -3)
a) Tính khoảng cách từ điểm M đến đường thẳng d
b) Viết pt đường thẳng đi qua M và vuông góc với đường thẳng d
c) Viết pt tiếp tuyến với đường tròn (C): (x-2)2 + (y-3)2 =9 biết rằng tiếp tuyến đó song song với đường thẳng d
d) Cho ∆ABC biết tọa độ trực tâm H(2;2). Tâm đường tròn ngoại tiếp ∆ABC là điểm I(1;2). Xác định tọa độ các điểm A, B, C biết trung điểm của BC là điểm M(1;1) và hoành độ điểm B âm
Trong mặt phẳng tọa độ Oxy, cho đường tròn C 1 : x 2 + y 2 = 4 , C 2 : x 2 + y 2 - 12 x + 18 = 0 và đường thẳng d : x - y + 4 = 0 . Phương trình đường tròn có tâm thuộc C 2 , tiếp xúc với d và cắt C 1 tại hai điểm phân biệt A và B sao cho AB vuông góc với d là:
A. x - 3 2 + y - 3 2 = 4
B. x - 3 2 + y - 3 2 = 8
C. x + 3 2 + y + 3 2 = 8
D. x + 3 2 + y + 3 2 = 4
Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình x+y-2=0. Viết phương trình đường thẳng d' là ảnh của d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm I(-1;1) tỉ số k=1/2 và phép quay tâm O góc 45 °
A. y=0
B. x=0
C. y=x
D. y=-x
Trong hệ tọa độ Oxy. Cho đường tròn (C ) có phương trình x 2 + y 2 - 4 x + 2 y - 15 = 0 . I là tâm (C), đường thẳng d qua M(1;-3) cắt (C ) tại A, B. Biết tam giác IAB có diện tích là 8. Phương trình đường thẳng d là x+by+c=0. Tính (b+c)
A. 8.
B. 2.
C. 6
D. 1.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu S : x 2 + y 2 + z 2 + a x + b y + c z + d = 0 có bán kính R = 19 , đường thẳng d : x = 5 + t y = - 2 - 4 t z = - 1 - 4 t và mặt phẳng ( P ) : 3 x - y - 3 z - 1 = 0 . Trong các số {a,b,c,d} theo thứ tự dưới đây, số nào thỏa mãn a + b + c + d = 43, đồng thời tâm I của (S) thuộc đường thẳng d và (S) tiếp xúc với (P)?
A. {-6;-12;-14;75}
B. {6;10;20;7}
C. {-10;4;2;47}
D. {3;5;6;29}