1.chứng tỏ rằng với mọi số nguyên n, các phân số sau đây là phân số tối giản :
\(\frac{15n+1}{30n+1}\)
a)b)\(\frac{n^3+2n}{n^4+3n^2+1}\)
2.Tìm tất cả các số nguyên để phân số \(\frac{18n+3}{21n+7}\)là phân số tối giản
3.Tìm phân số \(\frac{a}{a.b}\)biết rằng phân số đó bằng phân số \(\frac{1}{6.a}\)
4.Chứng tỏ rằng nếu phân số \(\frac{5n^2+1}{6}\)là số tự nhiên với n thuộc \(ℕ\)thì cả phân số \(\frac{n}{2}\)và\(\frac{n}{3}\)là các phân số tối giản
Ai làm đúng cả 4 bài mk tích cho nhé !!!
1. Tìm các cặp phân số bằng nhau trong các phân số sau và sử dụng tính chất cơ bản của phân số để giải thích kết luận.
\(\frac{1}{5};\frac{-10}{55};\frac{3}{15};\frac{-2}{11}\)
2. Trong các phân số sau đây, phân số nào là phân số tối giản, nếu chưa tối giản, hãy rút gọn chúng.
\(\frac{11}{23};\frac{-24}{15};\frac{-12}{-4};\frac{7}{-35};\frac{-9}{27}\)
3. Viết số đo sau đây dưới dạng phân số có đơn vị giờ, dưới dạng phân số tối giản.
\(15min;90min\)
1)Trong tháng 1 năm 1991 có ba ngày thứ năm là ba số nguyên tố. Với nhận xét đó, bạn hãy tính xem ngày 3-2-1991 vào thứ mấy ?
2)Tìm hai số tự nhiên a và b biết tích của chúng bằng 2940 và BCNN(a,b) = 210
3)
a) Tìm \(\overline{ab}\) để \(\frac{\overline{ab}}{a+b}\)nhỏ nhất.
b)Chứng minh : \(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{2007^2}>\frac{1}{5}\)
4) Chứng tỏ rằng với mọi \(n\in Z\)thì phân số \(\frac{7n}{7n+1}\)luôn là phân số tối giản.
5) Tìm tập hợp các số nguyên x để\(\frac{5x}{3}:\frac{10x^2+5x}{21}\)có giá trị nguyên
6)
a) Tìm phân số \(\frac{a}{b}\)bằng phân số \(\frac{44}{66}\)và ƯCLN(a,b)=36
b) Tìm x biết \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{x\left(x+2\right)}=\frac{20}{41}\)
Trong các phân số sau, tìm phân số không bằng với phân số còn lại.
\(\frac{15}{35}\),\(\frac{26}{33}\),\(\frac{21}{49}\),\(\frac{-21}{91}\),\(\frac{14}{77}\),\(\frac{-24}{104}\),\(\frac{6}{22}\).
Chứng tỏ rằng với mọi số nguyên n, các phân số sau là phân số tối giản:
a,\(\frac{15.n+1}{30.n+1}\)
b,\(\frac{n^3+2n}{n^4+3.n^2+1}\)
Câu 1: Tìm các phân số tối giản nhỏ hơn 1 có tử và mẫu đều dương, biết rằng tích của tử và mẫu là 120.
Câu 2: Tìm số tự nhiên n nhỏ nhất để các phân số sau đều là phân số tối giản:
\(\frac{5}{n+8},\frac{6}{n+9},\frac{7}{n+10},...,\frac{17}{n+20}\)
Câu 3: Tìm ác phân số lớn hơn \(\frac{1}{5}\)và khác số tự nhiên biết rằng nếu lấy mẫu nhân với 1 số, lấy tử cộng với số đó thì giá trị phân số không thay đổi.
a,Chứng tỏ rằng các phân số sau tối giản, với n là số tự nhiên: \(\frac{n-1}{3-2n}\); \(\frac{3n+7}{5n+12}\)
b,Tìm các số nguyên n để các phân số sau nhận giá trị nguyên: \(\frac{2n+5}{n-1}\); \(\frac{2n+1}{3n-2}\)
Chứng tỏ rằng nếu phân số\(\frac{5n^2+1}{6}\)là số tự nhiên với n \(\in\)N thì các phân số \(\frac{n}{2}\)và \(\frac{n}{3}\)là các phân số tối giản.
các phân số sau có bằng nhau không?
\(\frac{5}{7}\)và\(\frac{1+2+3+4+5}{1+2+3+4+5+6}\)